

LMX2491 6.4-GHz Low Noise RF PLL With Ramp/Chirp Generation

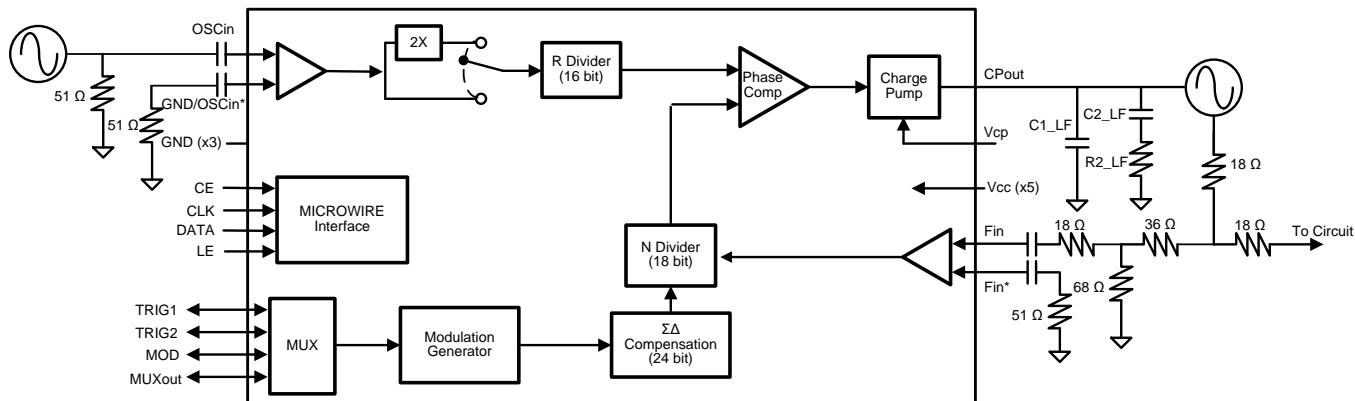
1 Features

- -227-dBc/Hz Normalized PLL Noise
- 500-MHz to 6.4-GHz Wideband PLL
- 3.15-V to 5.25-V Charge Pump PLL Supply
- Versatile Ramp / Chirp Generation
- 200-MHz Maximum Phase Detector Frequency
- FSK / PSK Modulation Pin
- Digital Lock Detect
- Single 3.3-V Supply Capability

2 Applications

- FMCW Radars
- Military Radars
- Microwave Backhaul
- Test and Measurement
- Satellite Communications
- Wireless Infrastructure
- Sampling Clock for High-Speed ADC/DAC

3 Description


The LMX2491 device is a low-noise, 6.4-GHz wideband delta-sigma fractional N PLL with ramp and chirp generation. It consists of a phase frequency detector, programmable charge pump, and high frequency input for the external VCO. The LMX2491 supports a broad and flexible class of ramping capabilities, including FSK, PSK, and configurable piecewise linear FM modulation profiles of up to 8 segments. It supports fine PLL resolution and fast ramp with up to a 200-MHz phase detector rate. The LMX2491 allows any of its registers to be read back. The LMX2491 can operate with a single 3.3-V supply. Moreover, supporting up to 5.25-V charge pump can eliminate the need of external amplifier, leading to a simpler solution with improved phase noise performance.

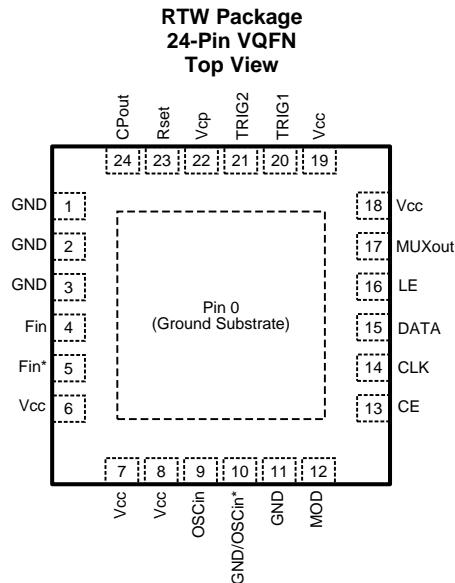
Device Information

Part Number	Package	Body Size (Nom)
LMX2491	WQFN (24)	4.00 mm x 4.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents


1	Features	1	7.5	Programming.....	14
2	Applications	1	7.6	Register Maps.....	14
3	Description	1	8	Applications and Implementation	27
4	Revision History	2	8.1	Application Information.....	27
5	Pin Configuration and Functions	3	8.2	Typical Application.....	27
6	Specifications	4	9	Power Supply Recommendations	39
6.1	Absolute Maximum Ratings	4	10	Layout	39
6.2	Storage Conditions.....	4	10.1	Layout Guidelines	39
6.3	ESD Ratings.....	4	10.2	Layout Example	40
6.4	Recommended Operating Conditions	4	11	Device and Documentation Support	41
6.5	Thermal Information	4	11.1	Device Support	41
6.6	Electrical Characteristics	5	11.2	Documentation Support	41
6.7	Timing Requirements, Programming Interface (CLK, DATA, LE).....	6	11.3	Receiving Notification of Documentation Updates	41
6.8	Typical Characteristics	6	11.4	Community Resources.....	41
7	Detailed Description	9	11.5	Trademarks	41
7.1	Overview	9	11.6	Electrostatic Discharge Caution	41
7.2	Functional Block Diagram	9	11.7	Glossary	41
7.3	Feature Description.....	9			
7.4	Device Functional Modes.....	13	12	Mechanical, Packaging, and Orderable Information	41

4 Revision History

Changes from Original (October 2016) to Revision A

		Page
•	Deleted Charge pump output pin from the table	4
•	Changed to Supply voltage	4
•	Changed to I/O input voltage	4
•	Changed to Power down current	5
•	Changed DATA field bit description.....	6
•	Added new plots in Typical Characteristics	7
•	Changed Table 1 title	9
•	Added CMP0 and CMP1 definition. Changed Equation 1 description.....	12
•	Added Register Readback	13
•	Added MSB bit description	14
•	Changed the format in Window and f_{PD} Frequency column	21
•	Changed to correct register bits location	23
•	Changed to correct value	25
•	Added correct start time	26
•	Added design details and plots in Typical Application	27

5 Pin Configuration and Functions

Pin Functions

TERMINAL		TYPE	DESCRIPTION
NO.	NAME		
0	DAP	GND	Die Attach Pad. Connect to PCB ground plane.
1	GND	GND	Ground for charge pump.
2, 3	GND	GND	Ground for Fin Buffer
4, 5	Fin Fin*	Input	Complimentary high frequency input pins. Should be AC-coupled. If driving single-ended, impedance as seen from Fin and Fin* pins looking outwards from the part should be roughly the same.
6	Vcc	Supply	Power Supply for Fin Buffer
7	Vcc	Supply	Supply for On-chip LDOs
8	Vcc	Supply	Supply for OSCin Buffer
9	OSCin	Input	Reference Frequency Input
10	GND/ OSCin*	GND/Input	Complimentary input for OSCin. If not used, it is recommended to match the termination as seen from the OSCin terminal looking outwards. However, this may also be grounded as well.
11	GND	GND	Ground for OSCin Buffer
12	MOD	Input/Output	Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
13	CE	Input	Chip Enable
14	CLK	GND	Serial Programming Clock.
15	DATA	GND	Serial Programming Data
16	LE	Input	Serial Programming Latch Enable
17	MUXout	Input/Output	Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
18	Vcc	Supply	Supply for delta sigma engine.
19	Vcc	Supply	Supply for general circuitry.
20	TRIG1	Input/Output	Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
21	TRIG2	Input/Output	Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics
22	Vcp	Supply	Power Supply for the charge pump.
23	Rset	NC	No connect.
24	CPout	Output	Charge Pump Output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V_{CP}	Supply voltage for charge pump	V_{CC}	5.5	V
V_{CC}	Supply voltage	-0.3	3.6	V
V_{IN}	I/O input voltage	-0.3	$V_{CC} + 0.3$	V
T_{Solder}	Lead temperature (solder 4 seconds)		260	°C
$T_{Junction}$	Junction temperature		150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Storage Conditions

applicable before the DMD is installed in the final product

		MIN	MAX	UNIT
T_{stg}	DMD storage temperature	-65	150	°C
T_{DP}	Storage dew point		3	°C

6.3 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3.15	3.3	3.45	V
V_{CP}	Charge pump supply voltage	V_{CC}		5.25	V
T_A	Ambient temperature	-40		85	°C
T_J	Junction temperature	-40		125	°C

6.5 Thermal Information

	THERMAL METRIC ⁽¹⁾	LMX2491	UNIT
		RTW (VQFN)	
		24 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	39.4	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	7.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	20	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

6.6 Electrical Characteristics

3.15 V \leq V_{CC} \leq 3.45 V, V_{CC} \leq V_{CP} \leq 5.25 V, $-40^{\circ}\text{C} \leq T_A \leq 85^{\circ}\text{C}$, except as specified. Typical values are at V_{CC} = V_{CP} = 3.3 V, 25 °C.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC} Current consumption	All V _{CC} pins	f _{PD} = 10 MHz	45		mA
		f _{PD} = 100 MHz	50		
		f _{PD} = 200 MHz	55		
	V _{CP} pin	K _{PD} = 0.1 mA	2		
		K _{PD} = 1.6 mA	10		
		K _{PD} = 3.1 mA	19		
I _{CCPD} Power down current	POWERDOWN		3		
f _{OSCin} Frequency for OSCin terminal	OSC_DIFFR = 0, doubler disabled	10	600		MHz
	OSC_DIFFR = 0, doubler enabled	10	300		
	OSC_DIFFR = 1, doubler disabled	10	1200		
	OSC_DIFFR = 1, doubler enabled	10	600		
V _{OSCin} Voltage for OSCin pin ⁽¹⁾		0.5	V _{CC} – 0.5		V _{PP}
f _{Fin} Frequency for Fin pin		500	6400		MHz
P _{Fin} Power for Fin pin	Single-ended operation	–5	5		dBm
f _{PD} Phase detector frequency			200		MHz
PN1Hz PLL figure of merit ⁽²⁾			–227		dBc/Hz
PN10kHz Normalized PLL 1/f noise ⁽²⁾	Normalized to 10-kHz offset for a 1-GHz carrier.		–120		dBc/Hz
I _{CPout,TRI} Charge pump leakage tri-state leakage			10		nA
I _{CPout,MM} Charge pump mismatch ⁽³⁾	V _{CPout} = V _{CP} / 2		5%		
I _{CPout} Charge pump current	V _{CPout} = V _{CP} / 2	CPG = 1X	0.1		mA
		...			
		CPG = 31X	3.1		
LOGIC OUTPUT TERMINALS (MUXout, TRIG1, TRIG2, MOD)					
V _{OH} Output high voltage		0.8 \times V _{CC}	V _{CC}		V
V _{OL} Output low voltage			0	0.2 \times V _{CC}	V
LOGIC INPUT TERMINALS (CE, CLK, DATA, LE, MUXout, TRIG1, TRIG2, MOD)					
V _{IH} Input high voltage		1.4	V _{CC}		V
V _{IL} Input low voltage		0	0.6		V
I _{IH} Input leakage current		–5	1	5	µA
t _{CE,LOW} Chip enable low time		5			µs
t _{CE,HIGH} Chip enable high time		5			µs

- (1) For optimal phase noise performance, higher input voltage and a slew rate of at least 3 V/ns is recommended
- (2) PLL Noise Metrics are measured with a clean OSCin signal with a high slew rate using a wide loop bandwidth. The noise metrics model the PLL noise for an infinite loop bandwidth as:

$$\text{PLL_Total} = 10 \times \log(10^{\text{PLL_Flat}} / 10 + 10^{\text{PLL_Flicker}} / 10)$$

$$\text{PLL_Flat} = \text{PN1Hz} + 20 \times \log(N) + 10 \times \log(f_{PD} / 1 \text{ Hz})$$

$$\text{PLL_Flicker} = \text{PN10kHz} - 10 \times \log(\text{Offset} / 10 \text{ kHz}) + 20 \times \log(f_{VCO} / 1 \text{ GHz})$$
- (3) Charge pump mismatch varies as a function of charge pump voltage. Consult typical performance characteristics to see this variation.

6.7 Timing Requirements, Programming Interface (CLK, DATA, LE)

		MIN	TYP	MAX	UNIT
t_{CE}	Clock to LE low time	10			ns
t_{CS}	Data to clock setup time	4			ns
t_{CH}	Data to clock hold time	4			ns
t_{CWH}	Clock pulse width high	10			ns
t_{CWL}	Clock pulse width low	10			ns
t_{CES}	Enable to clock setup time	10			ns
t_{EWH}	Enable pulse width high	10			ns

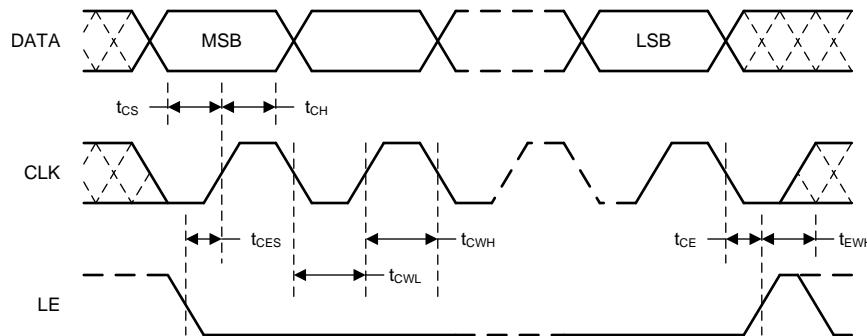
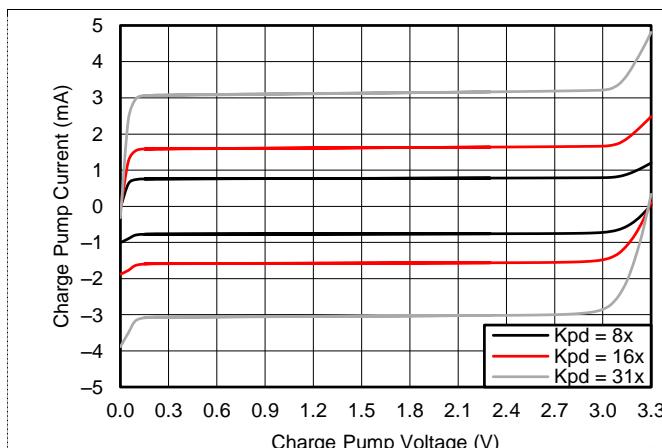
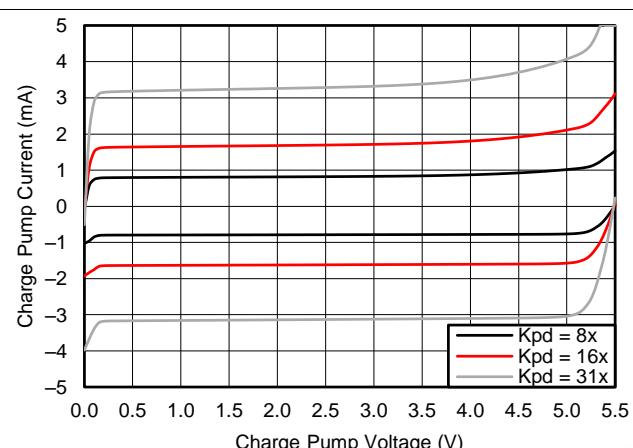



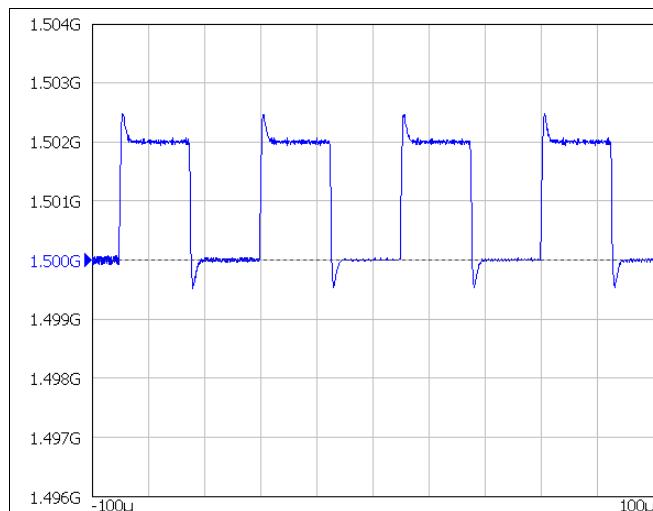
Figure 1. Serial Data Input Timing

There are several other considerations for programming:

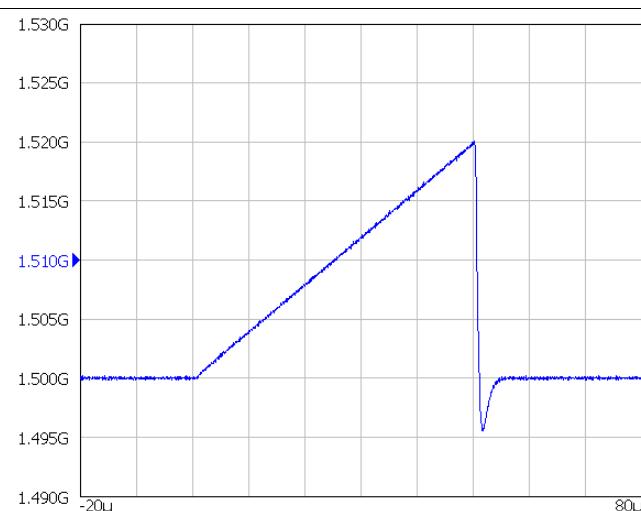

- The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the LE signal, the data is sent from the shift register to an actual counter.
- If no LE signal is given after the last data bit and the clock is kept toggling, then these bits are read into the next lower register. This eliminates the need to send the address each time.
- A slew rate of at least 30 V/ μ s is recommended for the CLK, DATA, and LE signals
- Timing specs also apply to readback. Readback can be done through the MUXout, TRIG1, TRIG2, or MOD terminals.

6.8 Typical Characteristics

Optimal performance is for a typical charge pump output voltage between 0.5 and 2.8 volts.


Figure 2. Charge Pump Current for $V_{CP} = 3.3$ V

Optimal performance is typically for a charge pump output voltage between 0.5 and 4.5 volts.


Figure 3. Charge Pump Current for $V_{CP} = 5.5$ V

Typical Characteristics (continued)

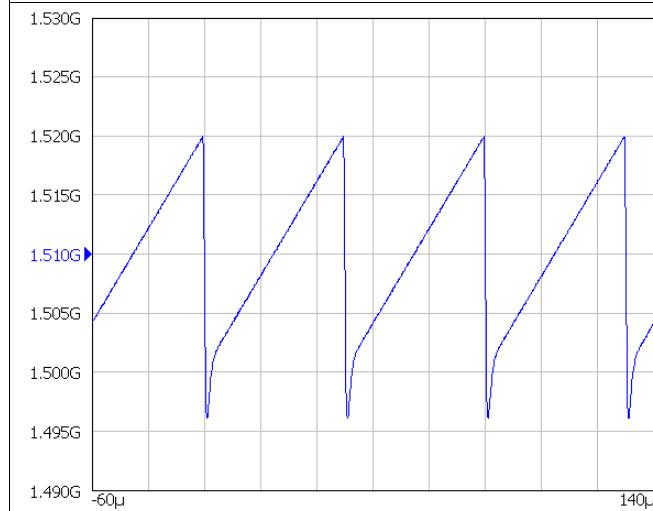

See [Frequency Shift Keying Example](#) for the detail of configuration.

Figure 4. Frequency Shift Keying

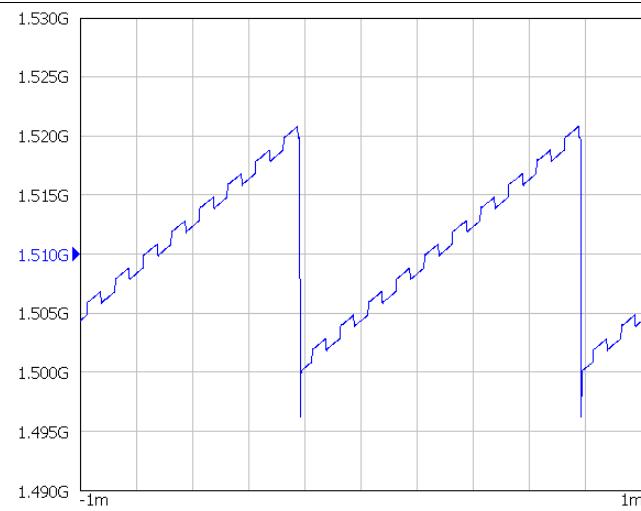
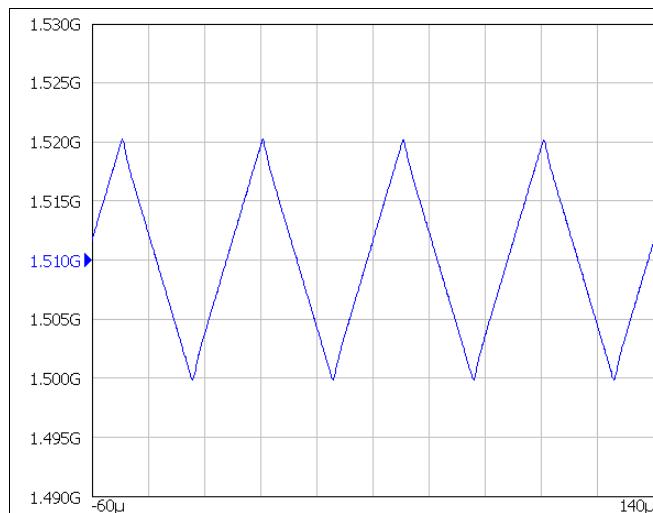
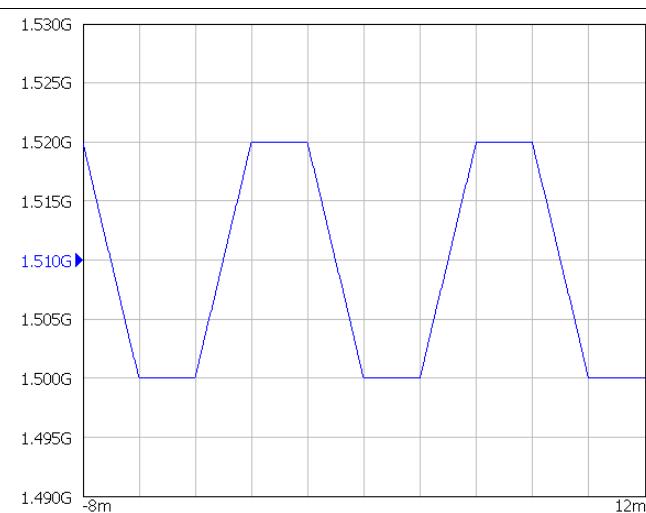

See [Single Sawtooth Ramp Example](#) for the detail of configuration.

Figure 5. Single Sawtooth Ramp

See [Continuous Sawtooth Ramp Example](#) for the detail of configuration.


Figure 6. Continuous Sawtooth Ramp

See [Continuous Sawtooth Ramp with FSK Example](#) for the detail of configuration.


Figure 7. Continuous Sawtooth Ramp with FSK

Typical Characteristics (continued)

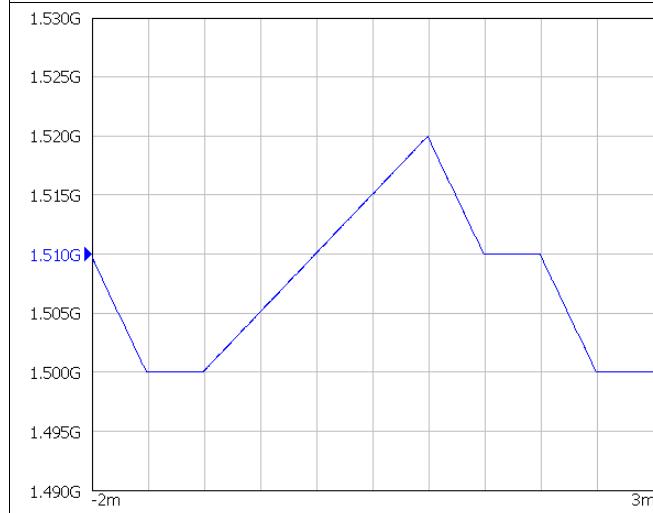

See [Continuous Triangular Ramp Example](#) for the detail of configuration.

Figure 8. Continuous Triangular Ramp

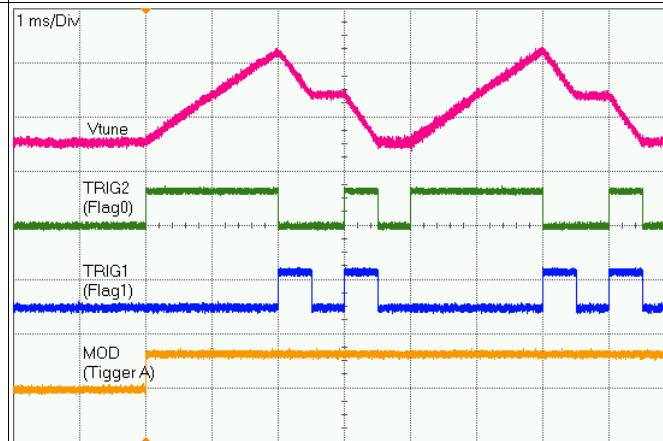
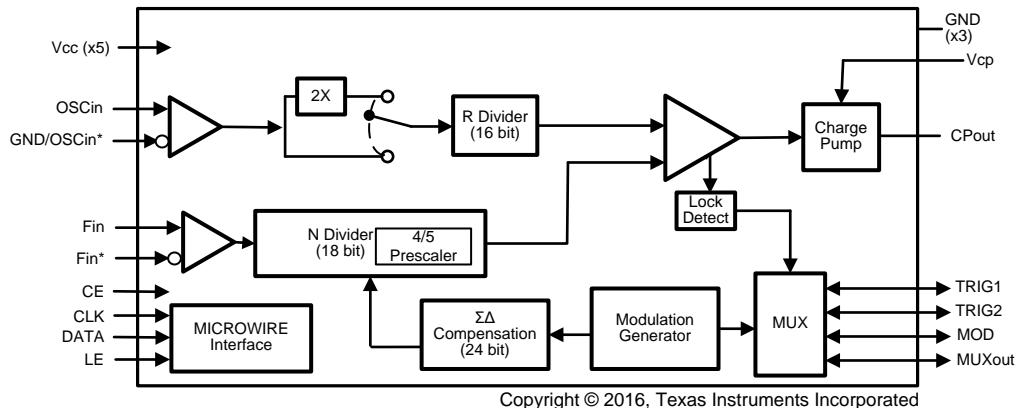

See [Continuous Trapezoid Ramp Example](#) for the detail of configuration.

Figure 9. Continuous Trapezoid Ramp

See [Arbitrary Waveform Ramp Example](#) for the detail of configuration.

Figure 10. Arbitrary Waveform Ramp

See [Arbitrary Waveform Ramp Example](#) for the detail of configuration.


Figure 11. Output Flags

7 Detailed Description

7.1 Overview

The LMX2491 is a microwave PLL, consisting of a reference input and divider, high frequency input and divider, charge pump, ramp generator, and other digital logic. The V_{CC} power supply pins run at a nominal 3.3 volts, while the charge pump supply pin, V_{CP} , operates anywhere from V_{CC} to 5 volts. The device is designed to operate with an external loop filter and VCO. Modulation is achieved by manipulating the MASH engine.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 OSCin Input

The reference can be applied in several ways. If using a differential input, this must be terminated differentially with a $100\text{-}\Omega$ resistance and AC-coupled to the OSCin and GND/OSCin* terminals. If driving this single-ended, then the GND/OSCin* terminal may be grounded, although better performance is attained by connecting the GND/OSCin* terminal through a series resistance and capacitance to ground to match the OSCin terminal impedance.

7.3.2 OSCin Doubler

The OSCin doubler allows the input signal to the OSCin to be doubled to have higher phase detector frequencies. This works by clocking on both the rising and falling edges of the input signal, so it therefore requires a 50% input duty cycle.

7.3.3 R Divider

The R counter is 16 bits divides the OSCin signal from 1 to 65535. If DIFF_R = 0, then any value can be chosen in this range. If DIFF_R = 1, then the divide is restricted to 2, 4, 8, and 16, but allows for higher OSCin frequencies.

7.3.4 PLL N Divider

The 16-bit N divider divides the signal at the Fin terminal down to the phase detector frequency. It contains a 4/5 prescaler that creates minimum divide restrictions, but allows the N value to increment in values of one.

Table 1. Allowable Minimum N Divider Values

MODULATOR ORDER	MINIMUM N DIVIDE
Integer Mode, 1st-Order Modulator	16
2nd-Order Modulator	17
3rd-Order Modulator	19
4th-Order Modulator	25

7.3.5 Fractional Circuitry

The fractional circuitry controls the N divider with delta sigma modulation that supports a programmable first, second, third, and fourth-order modulator. The fractional denominator is a fully programmable 24-bit denominator that can support any value from 1, 2, ..., 2^{24} , with the exception when the device is running one of the ramps, and in this case it is a fixed size of 2^{24} .

7.3.6 PLL Phase Detector and Charge Pump

The phase detector compares the outputs of the R and N dividers and generates a correction voltage corresponding to the phase error. This voltage is converted to a correction current by the charge pump. The phase detector frequency, f_{PD} , can be calculated as follows: $f_{PD} = f_{OSCin} \times OSC_2X / R$.

The charge pump supply voltage on this device, V_{CP} , can be either run at the V_{CC} voltage, or up to 5.25 volts to get higher tuning voltages to present to the VCO.

7.3.7 External Loop Filter

The loop filter is external to the device and is application specific. Texas Instruments website has details on this at www.ti.com.

7.3.8 Fastlock and Cycle Slip Reduction

This PLL has a Fastlock and a cycle slipping reduction feature. The user can enable these two features by programming FL_TOC to a non-zero value. Every time PLL_N (the feedback divider, register R17 and R16) is written, the Fastlock feature engages for the prescribed time set in FL_TOC. There are 3 actions that can be enabled while the counter is running:

1. Change the charge pump current to the desired higher value FL_CPG. Typically this value would be set to the maximum at 31x. This increases the loop bandwidth and hence reduces lock time.
2. Change the phase detector frequency with FL_CSR to reduce cycle slipping. The phase detector frequency can be reduced by a factor 2 or 4 to reduce cycle slipping.
3. The loop filter can be configured to have a switchable R2 resistor to increase loop bandwidth and hence reduce lock time. A resistor R2pLF is added in parallel to R2_LF and connected to the a terminal on the PLL to use the internal switch. Any of the terminal MUXout, MOD, TRIG1, or TRIG2 can be configured for the function. The terminal configuration is set as *Output TOC Running*. Also set the terminal as *output inverted OD* (OD for open-drain) so the output will be high impedance in normal operation and act as ground in Fastlock. The suggested schematic for that feature is shown in Figure 12.

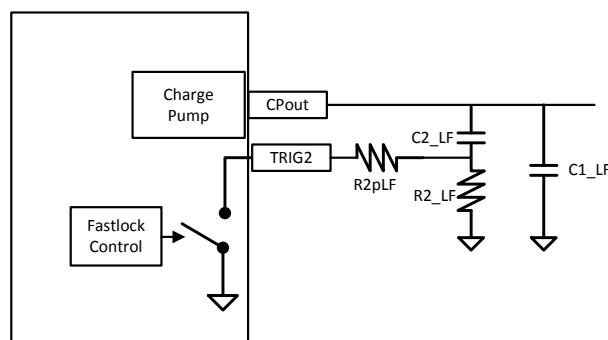


Figure 12. Suggested Schematic to Enable the Variable Loop Bandwidth Filter In Fastlock Mode

Table 2. Fastlock Settings: Charge Pump Gain and Fastlock Pin Status

PARAMETER	NORMAL OPERATION	FASTLOCK OPERATION
Charge Pump Gain	CPG	FL_CPG
Device Pin (TRIG1, TRIG2, MOD, or MUXout)	High Impedance	Grounded

The resistor and the charge pump current are changed simultaneously so that the phase margin remains the same while the loop bandwidth is by a factor of K as shown in the following table:

Table 3. Suggested Equations to Calculate R2pLF

PARAMETER	CALCULATION
FL_CPG	Charge Pump Gain in Fastlock
K	Loop Bandwidth Multiplier
R2pLF	External Resistor

Cycle slip reduction is another method that can also be used to speed up lock time by reducing cycle slipping. Cycle slipping typically occurs when the phase detector frequency exceeds about 100x the loop bandwidth of the PLL. Cycle slip reduction works in a different way than fastlock. To use this, the phase detector frequency is decreased while the charge pump current is simultaneously increased by the same factor. Although the loop bandwidth is unchanged, the ratio of the phase detector frequency to the loop bandwidth is, and this is helpful for cases when the phase detector frequency is high. Because cycle slip reduction changes the phase detector rate, it also impacts other things that are based on the phase detector rate, such as the fastlock timeout-counter and ramping controls.

7.3.9 Lock Detect and Charge Pump Voltage Monitor

The LMX2491 offers two methods to determine if the PLL is in lock: charge pump voltage monitoring and digital lock detect. These features can be used individually or in conjunction to give a reliable indication of when the PLL is in lock. The output of this detection can be routed to the TRIG1, TRIG2, MOD, or MUXout terminals.

7.3.9.1 Charge Pump Voltage Monitor

The charge pump voltage monitor allows the user to set low (CMP_THR_LOW) and high (CMP_THR_HIGH) thresholds for a comparator that monitors the charge pump output voltage.

Table 4. Desired Comparator Threshold Register Settings for Two Charge Pump Supplies

V _{CP}	THRESHOLD	SUGGESTED LEVEL
3.3 V	CPM_THR_LOW = (Vthresh + 0.08) / 0.085	6 for 0.5-V limit
	CPM_THR_HIGH = (Vthresh - 0.96) / 0.044	42 for 2.8-V limit
5.0 V	CPM_THR_LOW = (Vthresh + 0.056) / 0.137	4 for 0.5-V limit
	CPM_THR_HIGH = (Vthresh - 1.23) / 0.071	46 for 4.5-V limit

7.3.9.2 Digital Lock Detect

Digital lock detect works by comparing the phase error as presented to the phase detector. If the phase error plus the delay as specified by the PFD_DLY bit is outside the tolerance as specified by DLD_TOL, then this comparison would be considered to be an error, otherwise passing. The DLD_ERR_CNT specifies how many errors are necessary to cause the circuit to consider the PLL to be unlocked. The DLD_PASS_CNT specifies how many passing comparisons are necessary to cause the PLL to be considered to be locked and also resets the count for the errors. The DLD_TOL value should be set to no more than half of a phase detector period plus the PFD_DLY value. The DLD_ERR_CNT and DLD_PASS_CNT values can be decreased to make the circuit more sensitive. If the circuit is too sensitive, then chattering can occur and the DLD_ERR_CNT, DLD_PASS_CNT, or DLD_TOL values should be increased.

NOTE

If the OSCin signal goes away and there is no noise or self-oscillation at the OSCin pin, then it is possible for the digital lock detect to indicate a locked state when the PLL really is not in lock. If this is a concern, then digital lock detect can be combined with charge pump voltage monitor to detect this situation.

7.3.10 FSK/PSK Modulation

Two-level FSK or PSK modulation can be created whenever a trigger event, as defined by the FSK_TRIG field is detected. This trigger can be defined as a transition on a terminal (TRIG1, TRIG2, MOD, or MUXout) or done purely in software. The RAMP_PM_EN bit defines the modulation to be either FSK or PSK and the FSK_DEV register determines the amount of the deviation. Remember that the FSK_DEV[32:0] field is programmed as the 2's complement of the actual desired FSK_DEV value. This modulation can be added to the modulation created from the ramping functions as well.

Table 5. How to Obtain Deviation for Two Types of Modulation

RAMP_PM_EN	MODULATION TYPE	DEVIATION
0	2 Level FSK	$f_{PD} \times FSK_DEV / 2^{24}$
1	2 Level PSK	$360^\circ \times FSK_DEV / 2^{24}$

7.3.11 Ramping Functions

The LMX2491 supports a broad and flexible class of FMCW modulation formed by up to 8 linear ramps. When the ramping function is running, the denominator is fixed to a forced value of $2^{24} = 16777216$. The waveform always starts at RAMP0 when the LSB of the PLL_N (R16) is written to. After it is set up, it starts at the initial frequency and have piecewise linear frequency modulation that deviates from this initial frequency as specified by the modulation. Each of the eight ramps can be individually programmed. Various settings are as follows:

Table 6. Register Descriptions of the Ramping Function

RAMP CHARACTERISTIC	PROGRAMMING FIELD NAME	DESCRIPTION
Ramp Length	RAMPx_LEN RAMPx_DLY	The user programs the length of the ramp in phase detector cycles. If RAMPx_DLY = 1, then each count of RAMPx_LEN is actually two phase detector cycles.
Ramp Slope	RAMPx_LEN RAMPx_DLY RAMPx_INC	The user does not directly program slope of the line, but rather this is done by defining how long the ramp is and how much the fractional numerator is increased per phase detector cycle. The value for RAMPx_INC is calculated by taking the total expected increase in the frequency, expressed in terms of how much the fractional numerator increases, and dividing it by RAMPx_LEN. The value programmed into RAMPx_INC is actually the two's complement of the desired mathematical value.
Trigger for Next Ramp	RAMPx_NEXT_TRIG	The event that triggers the next ramp can be defined to be the ramp finishing or can wait for a trigger as defined by Trigger A, Trigger B, or Trigger C.
Next Ramp	RAMPx_NEXT	This sets the ramp that follows. Waveforms are constructed by defining a chain ramp segments. To make the waveform repeat, make RAMPx_NEXT point to the first ramp in the pattern.
Ramp Fastlock	RAMPx_FL	This allows the ramp to use a different charge pump current or use Fastlock
Ramp Flags	RAMPx_FLAG	This allows the ramp to set a flag that can be routed to external terminals to trigger other devices.

7.3.11.1 Ramp Count

If it is desired that the ramping waveform keep repeating, then all that is needed is to make the RAMPx_NEXT of the final ramp equal to the first ramp. This runs until the RAMP_EN bit is set to zero. If this is not desired, then one can use the RAMP_COUNT to specify how many times the specified pattern is to repeat.

7.3.11.2 Ramp Comparators and Ramp Limits

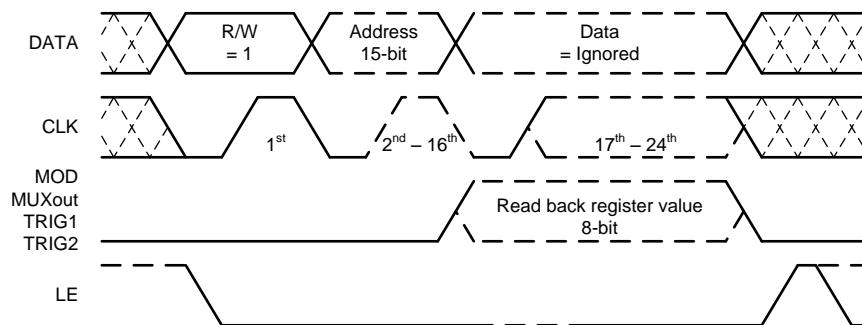
The ramp comparators and ramp limits use programmable thresholds to allow the device to detect whenever the modulated waveform frequency crosses a limit as set by the user. The difference between these is that comparators set a flag to alert the user while a ramp limits prevent the frequency from going beyond the prescribed threshold. In either case, these thresholds are expressed by programming the Extended_Fractional_Numerator. CMP0 and CMP1 are two separated comparators but they work in the same fashion.

$$\text{Extended_Fractional_Numerator} = \text{Fractional_Numerator} + (N - N^*) \times 2^{24} \quad (1)$$

In [Equation 1](#), N^* is the PLL feedback value without ramping. Fractional_Numerator and N are the new values as defined by the threshold frequency. The actual value programmed is the 2's complement of Extended_Fractional_Numerator.

Table 7. Register Descriptions of Ramp Comparators and Limits

TYPE	PROGRAMMING BIT	THRESHOLD
Ramp Limits	RAMP_LIMIT_LOW	Lower Limit
	RAMP_LIMIT_HIGH	Upper Limit
Ramp Comparators	RAMP_CMP0 RAMP_CMP1	For the ramp comparators, if the ramp is increasing and exceeds the value as specified by RAMP_CMPx, then the flag goes high, otherwise it is low. If the ramp is decreasing and goes below the value as specified by RAMP_CMPx, then the flag goes high, otherwise it is low.


7.3.12 Power-on-reset (POR)

The power-on-reset circuitry sets all the registers to a default state when the device is powered up. This same reset can be done by programming SWRST = 1. In the programming section, the power on reset state is given for all the programmable fields.

7.3.13 Register Readback

The LMX2491 allows any of its registers to be read back. MOD, MUXout, TRIG1 or TRIG2 pin can be programmed to support register-readback serial-data output. To read back a certain register value, follow the following steps:

1. Set the R/W bit to 1; the data field contents are ignored.
2. Send the register to the device; readback serial data will be output starting at the 17th clock cycle.

Figure 13. Register Readback Timing Diagram

7.4 Device Functional Modes

The two primary ways to use the LMX2491 are to run it to generate a set of frequencies

7.4.1 Continuous Frequency Generator

In this mode, the LMX2491 generates a single frequency that only changes when the N divider is programmed to a new value. In this mode, the RAMP_EN bit is set to 0 and the ramping controls are not used. The fractional denominator can be programmed to any value from 1 to 16777216. In this kind of application, the PLL is tuned to different channels, but at each channel, the goal is to generate a stable fixed frequency.

7.4.1.1 Integer Mode Operation

In integer mode operation, the VCO frequency needs to be an integer multiple of the phase detector frequency. This can be the case when the output frequency or frequencies are nicely related to the input frequency. As a rule of thumb, if this can be done with a phase detector of as high as the lesser of 10 MHz or the OSCin frequency, then this makes sense. To operate the device in integer mode, disable the fractional circuitry by programming the fractional order (FRAC_ORDER), dithering (FRAC_DITH), and numerator (FRAC_NUM) to zero.

Device Functional Modes (continued)

7.4.1.2 Fractional Mode Operation

In fractional mode, the output frequency does not need to be an integer multiple of the phase detector frequency. This makes sense when the channel spacing is more narrow or the input and output frequencies are not nicely related. There are several programmable controls for this such as the modulator order, fractional dithering, fractional numerator, and fractional denominator. There are many trade-offs with choosing these, but here are some guidelines

Table 8. Fractional Mode Register Descriptions and Recommendations

PARAMETER	FIELD NAME	HOW TO CHOOSE
Fractional Numerator and Denominator	FRAC_NUM FRAC_DEN	The first step is to find the fractional denominator. To do this, find the frequency that divides the phase detector frequency by the channel spacing. For instance, if the output ranges from 5000 to 5050 in 5-MHz steps and the phase detector is 100 MHz, then the fractional denominator is $100\text{ MHz} / 5 = 20$. So for a an output of 5015 MHz, the N divider would be $50 + 3/20$. In this case, the fractional numerator is 3 and the fractional denominator is 20. Sometimes when dithering is used, it makes sense to express this as a larger equivalent fraction. Note that if ramping is active, the fractional denominator is forced to 2^{24} .
Fractional Order	FRAC_ORDER	There are many trade-offs, but in general try either the 2nd or 3rd-order modulator as starting points. The 3rd-order modulator may give lower main spurs, but may generate others. Also if dithering is involved, it can generate phase noise.
Dithering	FRAC_DITH	Dithering can reduce some fractional spurs, but add noise. Consult application note AN-1879 Fractional N Frequency Synthesis for more details on this.

7.4.2 Modulated Waveform Generator

In this mode, the device can generate a broad class of frequency sweeping waveforms. The user can specify up to 8 linear segments to generate these waveforms. When the ramping function is running, the denominator is fixed to a forced value of $2^{24} = 16777216$

In addition to the ramping functions, there is also the capability to use a terminal to add phase or frequency modulation that can be done by itself or added on top of the waveforms created by the ramp generation functions.

7.5 Programming

7.5.1 Loading Registers

The device is programmed using several 24-bit registers. Each register consists of a data field, an address field, and a R/W bit. The MSB is the R/W bit. 0 means register write while 1 means register read. The following 15 bits of the register are the address, followed by the next 8 bits of data. The user has the option to pull the LE terminal high after this data, or keep sending data and it applies this data to the next lower register. So instead of sending three registers of 24 bits each, one could send a single 40-bit register with the 16 bits of address and 24 bits of data. For that matter, the entire device could be programmed as a single register if desired.

7.6 Register Maps

Registers are programmed in REVERSE order from highest to lowest. Registers NOT shown in this table or marked as reserved can be written as all 0s unless otherwise stated. The POR value is the power on reset value that is assigned when the device is powered up or the SWRST bit is asserted.

Table 9. Register Map

REGISTER	D7	D6	D5	D4	D3	D2	D1	D0	POR
0	0	0	0	0	1	1	0	0	0x18
1	0x1								0x00
2	0x2	0	0	0	0	0	SWRST	POWERDOWN[1:0]	0x00
3 - 15	0x3 - 0xF								-
16	0x10								0x64

Register Maps (continued)

Table 9. Register Map (continued)

REGISTER		D7	D6	D5	D4	D3	D2	D1	D0	POR				
17	0x11	PLL_N[15:8]								0x00				
18	0x12	0	FRAC_ORDER[2:0]		FRAC_DITHER[1:0]		PLL_N[17:16]							
19	0x13	FRAC_NUM[7:0]								0x00				
20	0x14	FRAC_NUM[15:8]								0x00				
21	0x15	FRAC_NUM[23:16]								0x00				
22	0x16	FRAC_DEN[7:0]								0x00				
23	0x17	FRAC_DEN[15:8]								0x00				
24	0x18	FRAC_DEN[23:16]								0x00				
25	0x19	PLL_R[7:0]								0x04				
26	0x1A	PLL_R[15:8]								0x00				
27	0x1B	0	FL_CSR[1:0]		PFD_DLY[1:0]		PLL_R_DIFF	0	OSC_2X	0x08				
28	0x1C	0	0	CPPOL	CPG[4:0]									
29	0x1D	FL_TOC[10:8]		FL_CPG[4:0]						0x00				
30	0x1E	0	CPM_FLAGL	CPM_THR_LOW[5:0]						0x0A				
31	0x1F	0	CPM_FLAGH	CPM_THR_HIGH[5:0]						0x32				
32	0x20	FL_TOC[7:0]								0x00				
33	0x21	DLD_PASS_CNT[7:0]								0x0F				
34	0x22	DLD_TOL[2:0]		DLD_ERR_CNTR[4:0]						0x00				
35	0x23	MOD_MUX[5]	1	MUXout_MUX[5]	TRIG2_MUX[5]	TRIG1_MUX[5]	0	0	1	0x41				
36	0x24	TRIG1_MUX[4:0]		TRIG1_PIN[2:0]						0x08				
37	0x25	TRIG2_MUX[4:0]		TRIG2_PIN[2:0]						0x10				
38	0x26	MOD_MUX[4:0]		MOD_PIN[2:0]						0x18				
39	0x27	MUXout_MUX[4:0]		MUXout_PIN[2:0]						0x38				
40 - 57	0x28 - 0x39	Reserved								-				
58	0x3A	RAMP_TRIG_A[3:0]		0		RAMP_PM_EN	RAMP_CLK	RAMP_EN						
59	0x3B	RAMP_TRIG_C[3:0]		RAMP_TRIG_B[3:0]										
60	0x3C	RAMP_CMP0[7:0]								0x00				
61	0x3D	RAMP_CMP0[15:8]								0x00				
62	0x3E	RAMP_CMP0[23:16]								0x00				
63	0x3F	RAMP_CMP0[31:24]								0x00				
64	0x40	RAMP_CMP0_EN[7:0]								0x00				
65	0x41	RAMP_CMP1[7:0]								0x00				
66	0x42	RAMP_CMP1[15:8]								0x00				
67	0x43	RAMP_CMP1[23:16]								0x00				
68	0x44	RAMP_CMP1[31:24]								0x00				
69	0x45	RAMP_CMP1_EN[7:0]								0x00				
70	0x46	0	FSK_TRIG[1:0]	RAMP_LIMH[32]	RAMP_LIML[32]	FSK_DEV[32]	RAMP_CMP1[32]	RAMP_CMP0[32]						
71	0x47	FSK_DEV[7:0]								0x00				
72	0x48	FSK_DEV[15:8]								0x00				
73	0x49	FSK_DEV[23:16]								0x00				
74	0x4A	FSK_DEV[31:24]								0x00				

Register Maps (continued)

Table 9. Register Map (continued)

REGISTER	D7	D6	D5	D4	D3	D2	D1	D0	POR
75	0x4B				RAMP_LIMIT_LOW[7:0]				0x00
76	0x4C				RAMP_LIMIT_LOW[15:8]				0x00
77	0x4D				RAMP_LIMIT_LOW[23:16]				0x00
78	0x4E				RAMP_LIMIT_LOW[31:24]				0x00
79	0x4F				RAMP_LIMIT_HIGH[7:0]				0xFF
80	0x50				RAMP_LIMIT_HIGH[15:8]				0xFF
81	0x51				RAMP_LIMIT_HIGH[23:16]				0xFF
82	0x52				RAMP_LIMIT_HIGH[31:24]				0xFF
83	0x53				RAMP_COUNT[7:0]				0x00
84	0x54	RAMP_TRIG_INC[1:0]	RAMP_AUTO		RAMP_COUNT[12:8]				0x00
85	0x55				Reserved				0x00
86	0x56				RAMP0_INC[7:0]				0x00
87	0x57				RAMP0_INC[15:8]				0x00
88	0x58				RAMP0_INC[23:16]				0x00
89	0x59	RAMP0_DLY	RAMP0_FL		RAMP0_INC[29:24]				0x00
90	0x5A				RAMP0_LEN[7:0]				0x00
91	0x5B				RAMP0_LEN[15:8]				0x00
92	0x5C	RAMP0_NEXT[2:0]		RAMP0_NEXT_TRIG[1:0]	RAMP0_RST	RAMP0_FLAG[1:0]			0x00
93	0x5D				RAMP1_INC[7:0]				0x00
94	0x5E				RAMP1_INC[15:8]				0x00
95	0x5F				RAMP1_INC[23:16]				0x00
96	0x60	RAMP1_DLY	RAMP1_FL		RAMP1_INC[29:24]				0x00
97	0x61				RAMP1_LEN[7:0]				0x00
98	0x62				RAMP1_LEN[15:8]				0x00
99	0x63	RAMP1_NEXT[2:0]		RAMP1_NEXT_TRIG[1:0]	RAMP1_RST	RAMP1_FLAG[1:0]			0x00
100	0x64				RAMP2_INC[7:0]				0x00
101	0x65				RAMP2_INC[15:8]				0x00
102	0x66				RAMP2_INC[23:16]				0x00
103	0x67	RAMP2_DLY	RAMP2_FL		RAMP2_INC[29:24]				0x00
104	0x68				RAMP2_LEN[7:0]				0x00
105	0x69				RAMP2_LEN[15:8]				0x00
106	0x6A	RAMP2_NEXT[2:0]		RAMP2_NEXT_TRIG[1:0]	RAMP2_RST	RAMP2_FLAG[1:0]			0x00
107	0x6B				RAMP3_INC[7:0]				0x00
108	0x6C				RAMP3_INC[15:8]				0x00
109	0x6D				RAMP3_INC[23:16]				0x00
110	0x6E	RAMP3_DLY	RAMP3_FL		RAMP3_INC[29:24]				0x00
111	0x6F				RAMP3_LEN[7:0]				0x00
112	0x70				RAMP3_LEN[15:8]				0x00
113	0x71	RAMP3_NEXT[2:0]		RAMP3_NEXT_TRIG[1:0]	RAMP3_RST	RAMP3_FLAG[1:0]			0x00

Register Maps (continued)

Table 9. Register Map (continued)

REGISTER	D7	D6	D5	D4	D3	D2	D1	D0	POR
114	0x72				RAMP4_INC[7:0]				0x00
115	0x73				RAMP4_INC[15:8]				0x00
116	0x74				RAMP4_INC[23:16]				0x00
117	0x75	RAMP4_DLY	RAMP4_FL		RAMP4_INC[29:24]				0x00
118	0x76				RAMP4_LEN[7:0]				0x00
119	0x77				RAMP4_LEN[15:8]				0x00
120	0x78		RAMP4_NEXT[2:0]		RAMP4_NEXT_TRIG[1:0]	RAMP4_RST		RAMP4_FLAG[1:0]	0x00
121	0x79				RAMP5_INC[7:0]				0x00
122	0x7A				RAMP5_INC[15:8]				0x00
123	0x7B				RAMP5_INC[23:16]				0x00
124	0x7C	RAMP5_DLY	RAMP5_FL		RAMP5_INC[29:24]				0x00
125	0x7D				RAMP5_LEN[7:0]				0x00
126	0x7E				RAMP5_LEN[15:8]				0x00
127	0x7F		RAMP5_NEXT[2:0]		RAMP5_NEXT_TRIG[1:0]	RAMP5_RST		RAMP5_FLAG[1:0]	0x00
128	0x80				RAMP6_INC[7:0]				0x00
129	0x81				RAMP6_INC[15:8]				0x00
130	0x82				RAMP6_INC[23:16]				0x00
131	0x83	RAMP6_DLY	RAMP6_FL		RAMP6_INC[29:24]				0x00
132	0x84				RAMP6_LEN[7:0]				0x00
133	0x85				RAMP6_LEN[15:8]				0x00
134	0x86		RAMP6_NEXT[2:0]		RAMP6_NEXT_TRIG[1:0]	RAMP6_RST		RAMP6_FLAG[1:0]	0x00
135	0x87				RAMP7_INC[7:0]				0x00
136	0x88				RAMP7_INC[15:8]				0x00
137	0x89				RAMP7_INC[23:16]				0x00
138	0x8A	RAMP7_DLY	RAMP7_FL		RAMP7_INC[29:24]				0x00
139	0x8B				RAMP7_LEN[7:0]				0x00
140	0x8C				RAMP7_LEN[15:8]				0x00
141	0x8D		RAMP7_NEXT[2:0]		RAMP7_NEXT_TRIG[1:0]	RAMP7_RST		RAMP7_FLAG[1:0]	0x00
142 - 32767	0x8E - 0x7FFF				Reserved				0x00

7.6.1 Register Field Descriptions

The following sections go through all the programmable fields and their states. Additional information is also available in the applications and feature descriptions sections as well. The POR column is the power on reset state that this field assumes if not programmed.

7.6.1.1 POWERDOWN and Reset Fields

Table 10. POWERDOWN and Reset Fields

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
				Value	POWERDOWN State
POWERDOWN [1:0]	R2[1:0]	0	POWERDOWN Control	0	Power Down, ignore CE
				1	Power Up, ignore CE
				2	Power State Defined by CE terminal state
				3	Reserved
SWRST	R2[2]	0	Software Reset. Setting this bit sets all registers to their POR default values.	Value	Reset State
				0	Normal Operation
				1	Register Reset

7.6.1.2 Dividers and Fractional Controls

Table 11. Dividers and Fractional Controls

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
PLL_N [17:0]	R18[1] to R16[0]	16	Feedback N counter Divide value. Minimum count is 16. Maximum is 262132. Writing of the register R16 begins any ramp execution when RAMP_EN = 1.		
FRAC_DITHER [1:0]	R18[3:2]	0	Dither used by the fractional modulator	Value	Dither
				0	Weak
				1	Medium
				2	Strong
				3	Disabled
FRAC_ORDER [2:0]	R18[6:4]	0	Fractional Modulator order	Value	Modulator Order
				0	Integer Mode
				1	1st Order Modulator
				2	2nd Order Modulator
				3	3rd Order Modulator
				4	4th Order Modulator
				5-7	Reserved
FRAC_NUM [23:0]	R21[7] to R19[0]	0	Fractional Numerator. This value should be less than or equal to the fractional denominator.		
FRAC_DEN [23:0]	R24[7] to R22[0]	0	Fractional Denominator. If RAMP_EN = 1, this field is ignored and the denominator is fixed to 2^{24} .		
PLL_R [15:0]	R26[7] to R25[0]	1	Reference Divider value. Selecting 1 bypasses counter.		
OSC_2X	R27[0]	0	Enables the Doubler before the Reference divider	Value	Doubler
				0	Disabled
				1	Enabled
PLL_R_DIFF	R27[2]	0	Enables the Differential R counter. This allows for higher OSCin frequencies, but restricts PLL_R to divides of 2, 4, 8 or 16.	Value	R Divider
				0	Single-Ended
				1	Differential
PFD_DLY [1:0]	R27[4:3]	1	Sets the charge pump minimum pulse width. This could potentially be a trade-off between fractional spurs and phase noise. Setting 1 is recommended for general use.	Value	Pulse Width
				0	Reserved
				1	860 ps
				2	1200 ps
				3	1500 ps
CPG [4:0]	R28[4:0]	0	Charge pump gain	Value	Charge Pump State
				0	Tri-State
				1	100 μ A
				2	200 μ A
			
				31	3100 μ A
CPPOL	R28[5]	0	Charge pump polarity is used to accommodate VCO with either polarity so that feedback of the PLL is always correct. IF reference (R) output is faster than feedback (N) output, R28[5]==0 THEN charge pump will source current R28[5]==1 THEN charge pump will sink current	Value	Charge Pump Polarity
				0	Positive
				1	Negative

7.6.1.2.1 Speed Up Controls (Cycle Slip Reduction and Fastlock)

Table 12. FastLock and Cycle Slip Reduction

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
FL_CSR [1:0]	R27[6:5]	0	Cycle Slip Reduction (CSR) reduces the phase detector frequency by multiplying both the R and N counters by the CSR value while either the FastLock Timer is counting or the RAMPx_FL = 1 and the part is ramping. Care must be taken that the R and N divides remain inside the range of the counters. Cycle slip reduction is generally not recommended during ramping.	Value	CSR Value
				0	Disabled
				1	x 2
				2	x 4
				3	Reserved
FL_CPG [4:0]	R29[4:0]	0	Charge pump gain only when Fast Lock Timer is counting down or a ramp is running with RAMPx_FL = 1	Value	Fastlock Charge Pump Gain
				0	Tri-State
				1	100 μ A
				2	200 μ A
			
				31	3100 μ A
FL_TOC [10:0]	R29[7:5] and R32[7:0]	0	Fast Lock Timer. This counter starts counting when the user writes the PLL_N(Register R16). During this time the FL_CPG gain is sent to the charge pump, and the FL_CSR shifts the R and N counters if enabled. When the counter terminates, the normal CPG is presented and the CSR undo's the shifts to give a normal PFD frequency.	Value	Fastlock Timer Value
				0	Disabled
				1	1 x 32 = 32
				...	
				2047	2047 x 32 = 65504

7.6.2 Lock Detect and Charge Pump Monitoring

Table 13. Lock Detect and Charge Pump Monitor

FIELD	LOCATION	POR	DESCRIPTION AND STATES			
CPM_THR_LOW [5:0]	R30[5:0]	0x0A	Charge pump voltage low threshold value. When the charge pump voltage is below this threshold, the LD goes low.	Value	Threshold	
				0	Lowest	
				
				63	Highest	
CPM_FLAGL	R30[6]	-	This is a read only bit. Low indicates the charge pump voltage is below the minimum threshold.	Value	Flag Indication	
				0	Charge pump is below CPM_THR_LOW threshold	
				1	Charge pump is above CPM_THR_LOW threshold	
CPM_THR_HIGH [5:0]	R31[5:0]	0x32	Charge pump voltage high threshold value. When the charge pump voltage is above this threshold, the LD goes low.	Value	Threshold	
				0	Lowest	
				
				63	Highest	
CPM_FLAGH	R31[6]	-	This is a read only bit. Charge pump voltage high comparator reading. High indicates the charge pump voltage is above the maximum threshold.	Value	Threshold	
				0	Charge pump is below CPM_THR_HIGH threshold	
				1	Charge pump is above CPM_THR_HIGH threshold	
DLD_PASS_CNT [7:0]	R33[7:0]	0xFF	Digital Lock Detect Filter amount. There must be at least DLD_PASS_CNT good edges and less than DLD_ERR edges before the DLD is considered in lock. Making this number smaller speeds the detection of lock, but also allows a higher chance of DLD chatter.			
DLD_ERR_CNT [4:0]	R34[4:0]	0	Digital Lock Detect error count. This is the maximum number of errors greater than DLD_TOL that are allowed before DLD is de-asserted. Although the default is 0, the recommended value is 4.			
DLD_TOL [2:0]	R34[7:5]	0	Digital Lock detect edge window. If both N and R edges are within this window, it is considered a "good" edge. Edges that are farther apart in time are considered "error" edges. Window choice depends on phase detector frequency, charge pump minimum pulse width, fractional modulator order and the users desired margin.	Value	Window and f_{PD} Frequency	
				0	1 ns ($f_{PD} > 130$ MHz)	
				1	1.7 ns (80 MHz < $f_{PD} \leq 130$ MHz)	
				2	3 ns (60 MHz < $f_{PD} \leq 80$ MHz)	
				3	6 ns (45 MHz < $f_{PD} \leq 60$ MHz)	
				4	10 ns (30 MHz < $f_{PD} \leq 45$ MHz)	
				5	18 ns ($f_{PD} \leq 30$ MHz)	
				6 and 7	Reserved	

7.6.3 TRIG1, TRIG2, MOD, and MUXout Pins

Table 14. TRIG1, TRIG2, MOD, and MUXout Terminal States

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
			Value	Pin Drive State	
TRIG1_PIN [2:0]	R36[2:0]	0	This is the terminal drive state for the TRIG1, TRIG2, MOD, and MUXout Pins	0	TRISTATE (default)
				1	Open Drain Output
				2	Pullup / Pulldown Output
				3	Reserved
				4	GND
				5	Inverted Open Drain Output
				6	Inverted Pullup / Pulldown Output
				7	Input

Table 15. TRIG1, TRIG2, MOD, and MUXout Selections

FIELD	LOCATION	POR	DESCRIPTION AND STATES	
			Value	MUX State
			0	GND
			1	Input TRIG1
			2	Input TRIG2
			3	Input MOD
			4	Output TRIG1 after synchronizer
			5	Output TRIG2 after synchronizer
			6	Output MOD after synchronizer
			7	Output Read back
			8	Output CMP0
			9	Output CMP1
			10	Output LD (DLD good AND CPM good)
			11	Output DLD
			12	Output CPMON good
			13	Output CPMON too High
			14	Output CPMON too low
			15	Output RAMP LIMIT EXCEEDED
			16	Output R Divide/2
			17	Output R Divide/4
			18	Output N Divide/2
			19	Output N Divide/4
			20	Reserved
			21	Reserved
			22	Output CMP0RAMP
			23	Output CMP1RAMP
			24	Reserved
			25	Reserved
			26	Reserved
			27	Reserved
			28	Output Faslock
			29	Output CPG from RAMP
			30	Output Flag0 from RAMP
			31	Output Flag1 from RAMP
			32	Output TRIGA
			33	Output TRIGB
			34	Output TRIGC
			35	Output R Divide
			36	Output CPUP
			37	Output CPDN
			38	Output RAMP_CNT Finished
			39 to 63	Reserved

7.6.4 Ramping Functions

Table 16. Ramping Functions

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
RAMP_EN	R58[0]	0	Enables the RAMP functions. When this bit is set, the Fractional Denominator is fixed to 2^{24} . RAMP execution begins at RAMP0 upon the PLL_N[7:0] write. The Ramp should be set up before RAMP_EN is set.	Value	Ramp
				0	Disabled
				1	Enabled
RAMP_CLK	R58[1]	0	RAMP clock input source. The ramp can be clocked by either the phase detector clock or the MOD terminal based on this selection.	Value	Source
				0	Phase Detector
				1	MOD Terminal
RAMP_PM_EN	R58[2]	0	Phase modulation enable.	Value	Modulation Type
				0	Frequency Modulation
				1	Phase Modulation
RAMP_TRIGA [3:0] RAMP_TRIGB [3:0] RAMP_TRIGC [3:0]	R58[7:4] R59[3:0] R59[7:4]	0	Trigger A, B, and C Sources	Value	Source
				0	Never Triggers (default)
				1	TRIG1 terminal rising edge
				2	TRIG2 terminal rising edge
				3	MOD terminal rising edge
				4	DLD Rising Edge
				5	CMP0 detected (level)
				6	RAMPx_CPG Rising edge
				7	RAMPx_FLAG0 Rising edge
				8	Always Triggered (level)
				9	TRIG1 terminal falling edge
				10	TRIG2 terminal falling edge
				11	MOD terminal falling edge
				12	DLD Falling Edge
				13	CMP1 detected (level)
				14	RAMPx_CPG Falling edge
				15	RAMPx_FLAG0 Falling edge
RAMP_CMP0 [32:0]	R70[0], R63[7] to R60[0]	0	Twos compliment of Ramp Comparator 0 value. Be aware of that the MSB is in Register R70.		
RAMP_CMP0_EN [7:0]	R64[7:0]	0	Comparator 0 is active during each RAMP corresponding to the bit. Place a 1 for ramps it is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7 corresponds to R64[7]		
RAMP_CMP1 [32:0]	R70[1], R68[7] to R65[0]	0	Twos compliment of Ramp Comparator 1 value. Be aware of that the MSB is in Register R70.		
RAMP_CMP1_EN [7:0]	R69[7:0]	0	Comparator 1 is active during each RAMP corresponding to the bit. Place a 1 for ramps it is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7 corresponds to R64[7].		
FSK_TRIG [1:0]	R76[4] to R75[3]	0	Deviation trigger source. When this trigger source specified is active, the FSK_DEV value is applied.	Value	Trigger
				0	Always Triggered
				1	Trigger A
				2	Trigger B
				3	Trigger C
FSK_DEV [32:0]	R70[2], R74[7] to R71[0]	0	Twos compliment of the deviation value for frequency modulation and phase modulation. This value should be written with 0 when not used. Be aware that the MSB is in Register R70.		

Table 16. Ramping Functions (continued)

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
RAMP_LIMIT_LOW [32:0]	R70[3], R78[7] to R75[0]	0	Twos compliment of the ramp lower limit that the ramp can not go below. The ramp limit occurs before any deviation values are included. Care must be taken if the deviation is used and the ramp limit must be set appropriately. Be aware that the MSB is in Register R70.		
RAMP_LIMIT_HIGH [32:0]	R70[4], R82[7] to R79[0]	0x1FF FFFF FF	Twos compliment of the ramp higher limit that the ramp can not go above. The ramp limit occurs before any deviation values are included. Care must be taken if the deviation is used and the ramp limit must be set appropriately. Be aware that the MSB is in Register R70.		
RAMP_COUNT [12:0]	R84[4] to R83[0]	0	Number of RAMPs that is executed before a trigger or ramp enable is brought down. Load zero if this feature is not used. Counter is automatically reset when RAMP_EN goes from 0 to 1.		
RAMP_AUTO	R84[5]	0	Automatically clear RAMP_EN when RAMP Count hits terminal count.	Value	Ramp
				0	RAMP_EN unaffected by ramp counter (default)
				1	RAMP_EN automatically brought low when ramp counter terminal counts
RAMP_TRIG_INC [1:0]	R84[7:6]	0	Increment Trigger source for RAMP Counter. To disable ramp counter, load a count value of 0.	Value	Source
				0	Increments occur on each ramp transition
				1	Increment occurs on Trigger A
				2	Increment occurs on Trigger B
				3	Increment occurs on Trigger C

7.6.5 Individual Ramp Controls

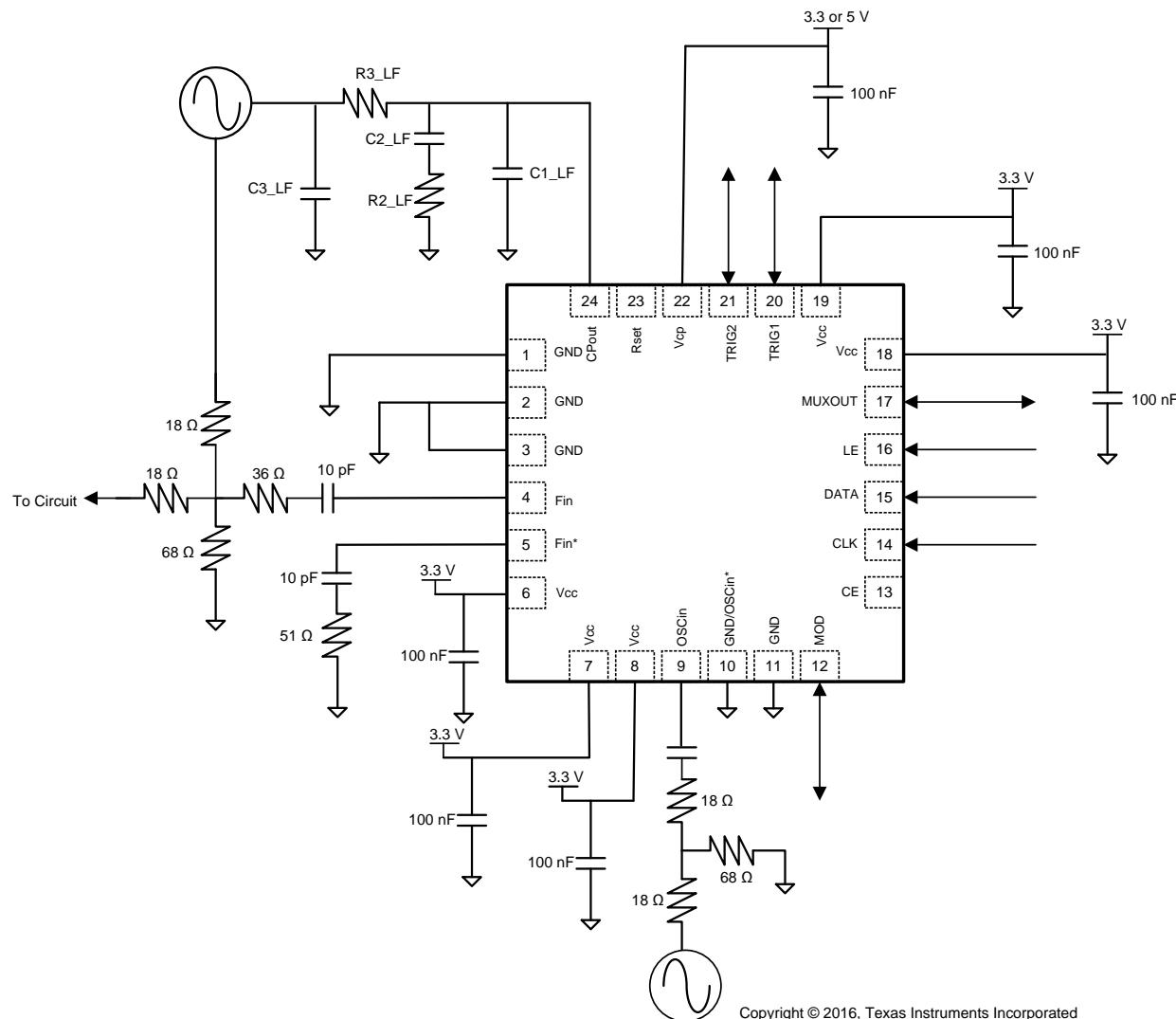
These bits apply for all eight ramp segments. For the field names, x can be 0, 1, 2, 3, 4, 5, 6, or 7.

Table 17. Individual Ramp Controls

FIELD	LOCATION	POR	DESCRIPTION AND STATES		
RAMPx_INC[29:0]	Varies	0	Signed ramp increment.		
RAMPx_FL	Varies	0	This enables fastlock and cycle slip reduction for ramp x.	Value	CPG
				0	Disabled
				1	Enabled
RAMPx_DLY	Varies	0	During this ramp, each increment takes $2 f_{PD}$ cycles per LEN clock instead of the normal $1 f_{PD}$ cycle. Slows the ramp by a factor of 2.	Value	Clocks
				0	$1 f_{PD}$ clock per RAMP tick.(default)
				1	$2 f_{PD}$ clocks per RAMP tick.
RAMPx_LEN	Varies	0	Number of f_{PD} clocks (if DLY is 0) to continue to increment RAMP. 1 = 1 cycle, 2 = 2 cycles, etc. Maximum of 65536 cycles.		
RAMPx_FLAG[1:0]	Varies	0	General purpose FLAGS sent out of RAMP at the start of a ramp pattern.	Value	Flag
				0	Both FLAG1 and FLAG0 are zero. (default)
				1	FLAG0 is set, FLAG1 is clear
				2	FLAG0 is clear, FLAG1 is set
				3	Both FLAG0 and FLAG1 are set.
RAMPx_RST	Varies	0	Forces a clear of the ramp accumulator at the start of a ramp pattern. This is used to erase any accumulator creep that can occur depending on how the ramps are defined.	Value	Reset
				0	Disabled
				1	Enabled
RAMPx_NEXT_TRIG[1:0]	Varies	0	Determines what event is necessary to cause the state machine to go to the next ramp. It can be set to when the RAMPx_LEN counter reaches zero or one of the events for Triggers A, B, or C.	Value	Operation
				0	RAMPx_LEN
				1	Trigger A
				2	Trigger B
				3	Trigger C
RAMPx_NEXT[2:0]	Varies	0	The next RAMP to execute when the length counter times out		

8 Applications and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMX2491 can be used in a broad class of applications such as generating a single frequency for a high frequency clock, generating a tunable range of frequencies, or generating swept waveforms that can be used in applications such as radar.

8.2 Typical Application

Figure 14 is an example that could be used in a typical application.

Figure 14. Typical Schematic

Typical Application (continued)

8.2.1 Design Requirements

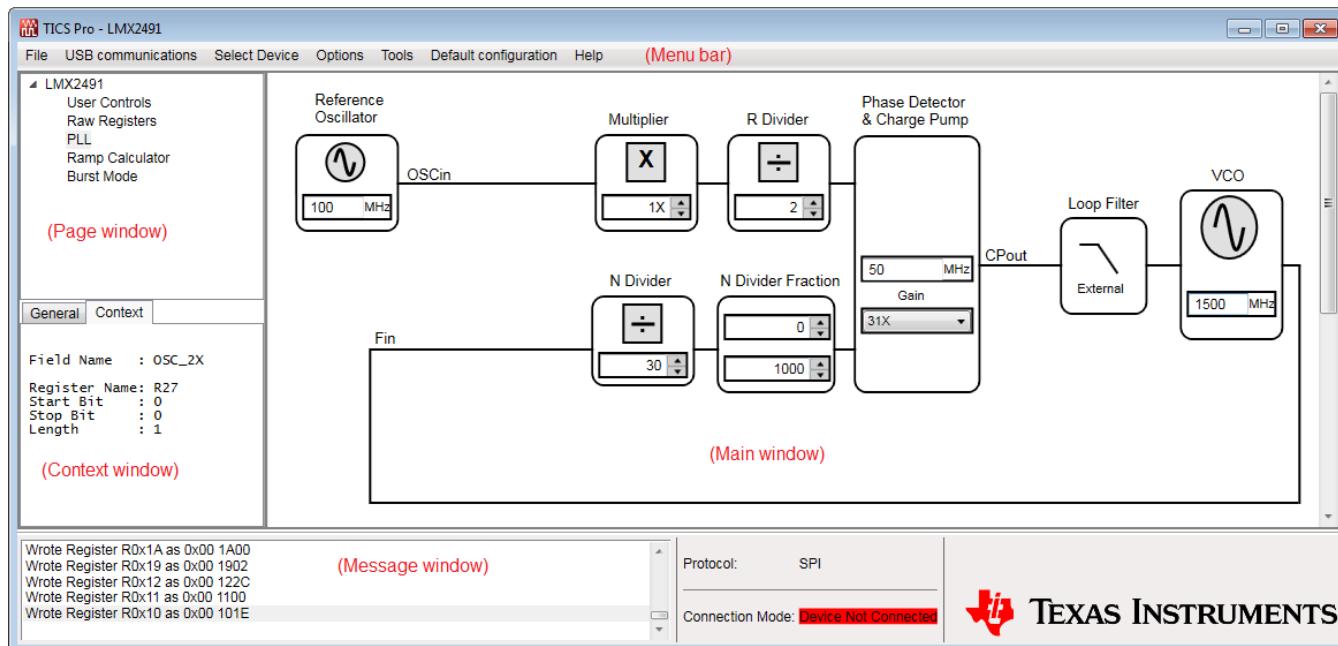
For these examples, it will be assumed that there is a 100 MHz input signal and the output frequency is between 1500 and 1520 MHz with various modulated waveforms.

Table 18. Design Requirements

PARAMETER	SYMBOL	VALUE	COMMENTS
Input frequency	f_{oscin}	100 MHz	
Phase detector frequency	f_{PD}	50 MHz	There are many possibilities, but this choice gives good performance.
VCO frequency	f_{VCO}	1500 - 1520 MHz	In the different examples, the VCO frequency is actually changing. However, the same loop filter design can be used for all examples. Unmodulated VCO frequency or steady state VCO frequency without ramp is 1500 MHz.
VCO gain	K_{VCO}	65 MHz/V	This parameter has nothing to do with the LMX2491, but is rather set by the external VCO choice.

8.2.2 Detailed Design Procedure

The first step is to calculate the reference divider (PLL_R) and feedback divider (PLL_N) values as shown in the table that follows.


Table 19. Detailed Design Procedure

PARAMETER	SYMBOL AND CALCULATIONS	VALUE	COMMENTS
Average VCO frequency	$f_{VCOavg} = (f_{VCOMax} + f_{VCOMin}) / 2$	1510 MHz	To design a loop filter, one designs for a fixed VCO value, although it is understood that the VCO will tune around. This typical value is usually chosen as the average VCO frequency
VCO gain	K_{VCO}	65 MHz/V	This parameter has nothing to do with LMX2491, but is rather set by the external VCO choice. In this case, it was the CVCO55BE-1400-1624 VCO.
VCO input capacitance	C_{VCO}	120 pF	This parameter has nothing to do with LMX2491, but is rather set by the external VCO choice.
PLL loop bandwidth	LBW	380 kHz	This bandwidth is very wide to allow the VCO frequency to be modulated.
Charge pump gain	CPG	3.1 mA	Using the larger gain allows a wider loop bandwidth and gives good phase performance.
R-divider	$PLL_R = f_{oscin} / f_{PD}$	2	
N-divider	$PLL_N = f_{VCO} / f_{PD}$	96	
Loop filter components	C1_LF	68 pF	These were calculated by TI PLLatinum Simulator Tool.
	C2_LF	3.9 nF	
	C3_LF	150 pF	
	R2_LF	390 Ω	
	R3_LF	150 Ω	

Once a loop filter bandwidth is chosen, the external loop filter component values can be calculated with a tool such as [PLLatinum Simulator Tool](#). It is also highly recommended to look at the EVM User's Guide. [TICS Pro](#) software is an excellent starting point and example to see how to program this device.

8.2.3 TICS Pro Basic Setup

In the following application examples, TICS Pro is used to program the device to implement different ramp profiles. The following procedure shows how to setup TICS Pro to put the device to lock to 1500 MHz without modulation or ramp.

Figure 15. TICS Pro

1. In the Menu bar, click Select Device and then select LMX2491.
2. In the Menu bar, click Default Configuration and then select Default Mode.
3. In the Page window, click PLL.
4. In the Main window, change R Divider value to 2 and VCO value to 1500.
5. In the Menu bar, click USB Communications and then click Write All Registers. The device is now locked to 1500 MHz.

Other TICS Pro fundamentals:

- When a particular content in the Main window is moused-over, the Context window will show a brief description of that content.
- An alternative method to write all registers is press the Ctrl key and L key from the keyboard.
- Whenever a value is updated in the Main window, the Message window will show which register is being updated

8.2.4 Frequency Shift Keying Example

FSK operation requires an external input trigger signal at either MOD, TRIG1 or TRIG2 pin. In this example, MOD pin is selected as the Trigger A source. A 20 kHz square-wave clock will be applied to MOD pin to toggle the RF output to switch between 1500 MHz and 1502 MHz. That is, FSK frequency deviation is 2 MHz. The following register bits are required to set in order to initiate FSK operation.

Table 20. FSK Register Settings

PARAMETER	REGISTER BIT	SETTING	COMMENTS
Frequency deviation	FSK_DEV	671089 = 2 MHz	Frequency deviation = $(f_{PD} \times FSK_DEV) / 2^{24}$
MOD pin characteristic	MOD_PIN	7 = Input	Set MOD pin as an input pin
FSK trigger source	FSK_DEV_TRIG	1 = Trigger A	Use Trigger A to trigger FSK
Trigger source definition	RAMP_TRIGA	3 = MOD Rising Edge	When there is a L-to-H transition at MOD pin, the set amount of frequency deviation will be added to the unmodulated carrier
Enable ramp	RAMP_EN	1 = Enabled	Activate FSK operation

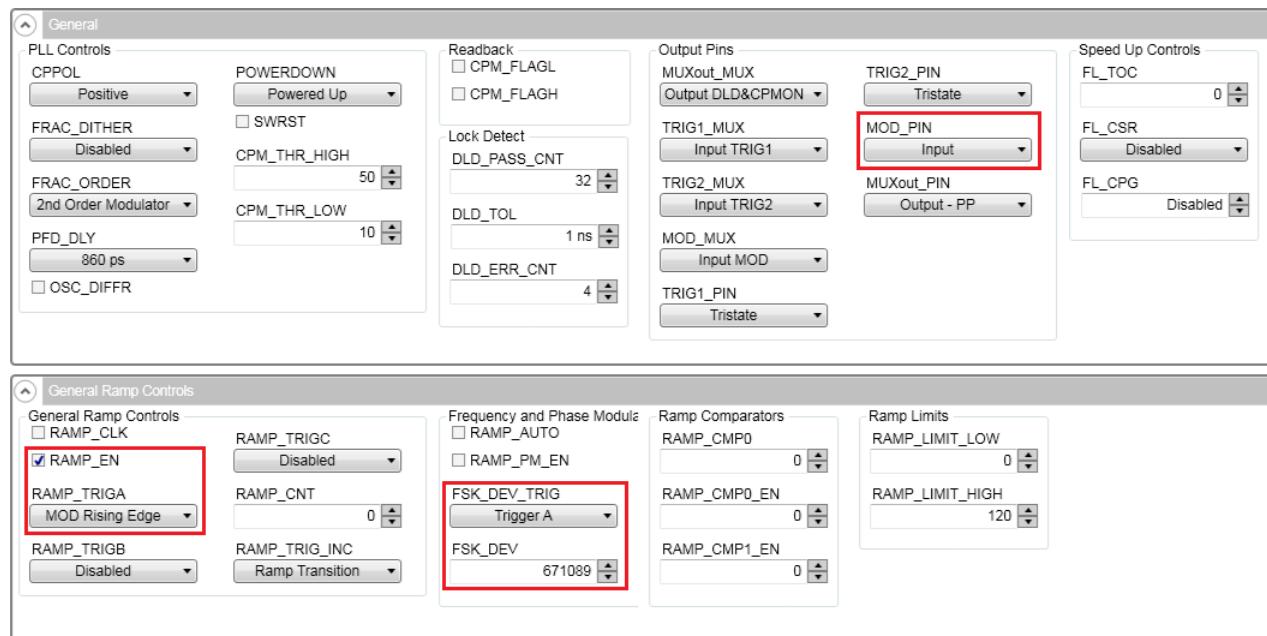


Figure 16. TICS Pro FSK Configuration

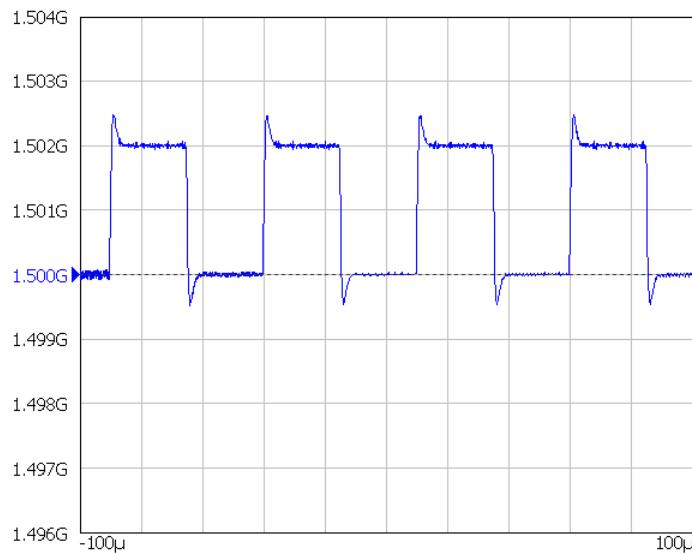


Figure 17. Frequency Shift Keying Example

8.2.5 Single Sawtooth Ramp Example

In this example, Trigger B is used to trigger the ramp generator of LMX2491 to generate a single frequency ramp between 1500 MHz and 1520 MHz. Ramp duration is 50 μ s. The ramp will finish and return back to 1500 MHz immediately when the output frequency reaches 1520 MHz. Trigger 1 pin is assigned as Trigger B source.

Two ramp segments are setup to create this one-time single ramp. RAMP0 is used to establish a trigger for the second ramp segment - RAMP1. When a trigger signal is received, RAMP1 will execute and bring the output frequency to 1520 MHz in 50 μ s.

Table 21. Single Sawtooth Ramp Register Settings

PARAMETER	REGISTER BIT	SETTING	COMMENTS
Set maximum ramp frequency threshold	RAMP_LIMIT_HIGH	16777216 = 1550 MHz	This threshold frequency can be anything above 1520 MHz. The fractional numerator is equal to 0 at 1550 MHz. The N-Divider difference between 1500 MHz and 1550 MHz is 1. From Equation 1 , this threshold is equal to $0 + (1 \times 2^{24}) = 16777216$.
Set minimum ramp frequency threshold	RAMP_LIMIT_LOW	8573157376 = 1450 MHz	This threshold frequency can be anything below 1500 MHz. This threshold is equal to -16777216 . This is a 33-bit long register, 2's complement is therefore equal to 8573157376.
Number of ramp in each ramp segment	RAMP0_LEN, RAMP1_LEN	2500 = for ramp duration equals 50 μ s	The duration of RAMP0 is not matter, for demonstration convenience, it has the same ramp duration as RAMP1. During ramp, LMX2491 ramp generator will increment its output frequency once per phase detector cycle. For ramp duration of 50 μ s and $f_{PD} = 50$ MHz, there are 2500 ramps [= 50 μ s / (1 / 50 MHz)].
Frequency change per ramp in RAMP0	RAMP0_INC	0	Since the output frequency would not change in RAMP0, there is no frequency increment.
Set next ramp segment	RAMP0_NEXT	1 = RAMP1	Set RAMP1 as the next ramp segment following RAMP0.
Set next ramp segment trigger source	RAMP0_NEXT_TRIG	2 = Trigger B	Use Trigger B to trigger the execution of RAMP1.
Rest fractional numerator	RAMP0_RST	1 = Reset	RAMP0 will execute again after RAMP1 is finished but RAMP1 does not end at 1500 MHz, a reset to the fractional numerator is required before RAMP0 is executed.
Frequency change per ramp in RAMP1	RAMP1_INC	2684 = 8 kHz	Between 1500 MHz and 1520 MHz, there are 2500 ramps. For each ramp, the output frequency will increment by 20 MHz / $2500 = 8$ kHz. For $f_{PD} = 50$ MHz and fractional denominator = 2^{24} , fractional numerator is incremented by a value of $(8$ kHz \times $2^{24}) / 50$ MHz \approx 2684.
Set next ramp segment	RAMP1_NEXT	0 = RAMP0	Set RAMP0 as the next ramp segment following RAMP1.
Set next ramp segment trigger source	RAMP1_NEXT_TRIG	0 = TOC Timeout	After RAMP1 is finished, the next ramp segment will execute immediately.
Trigger source definition	RAMP_TRIGB	1 = TRIG1 Rising Edge	When there is a L-to-H transition at TRIG1 pin, RAMP1 will execute.
TRIG1 pin characteristic	TRIG1_PIN	7 = Input	Set TRIG1 pin as an input pin.

It is recommended to use the Ramp Calculator in TICS Pro to create the ramp profile. TICS Pro will calculate the ramp-related register values automatically.

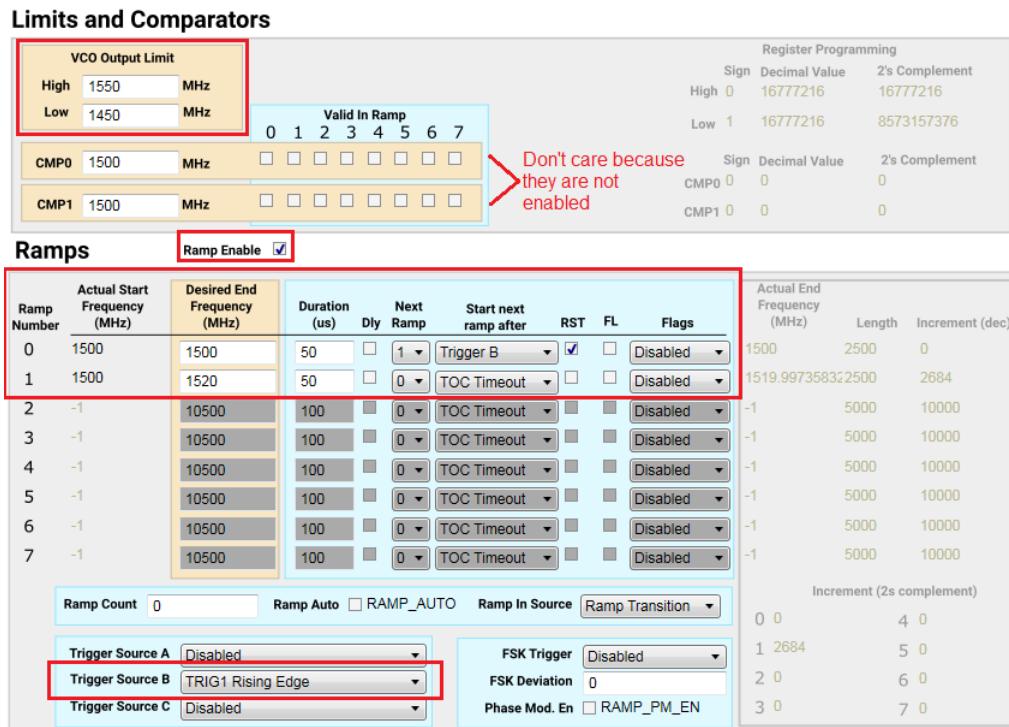
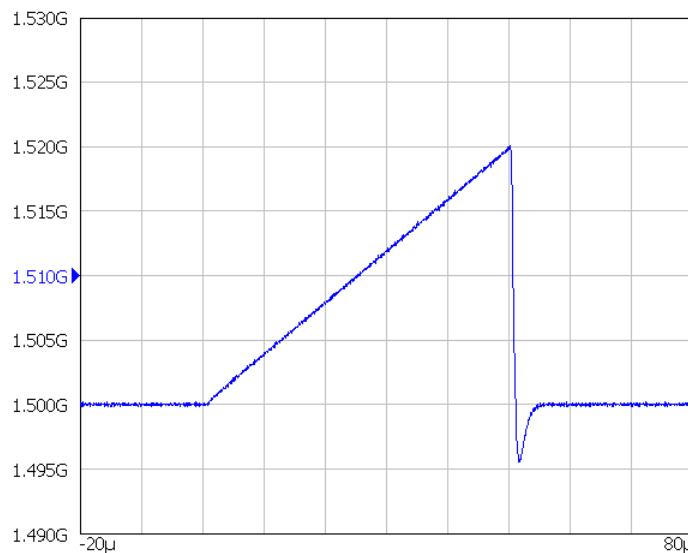
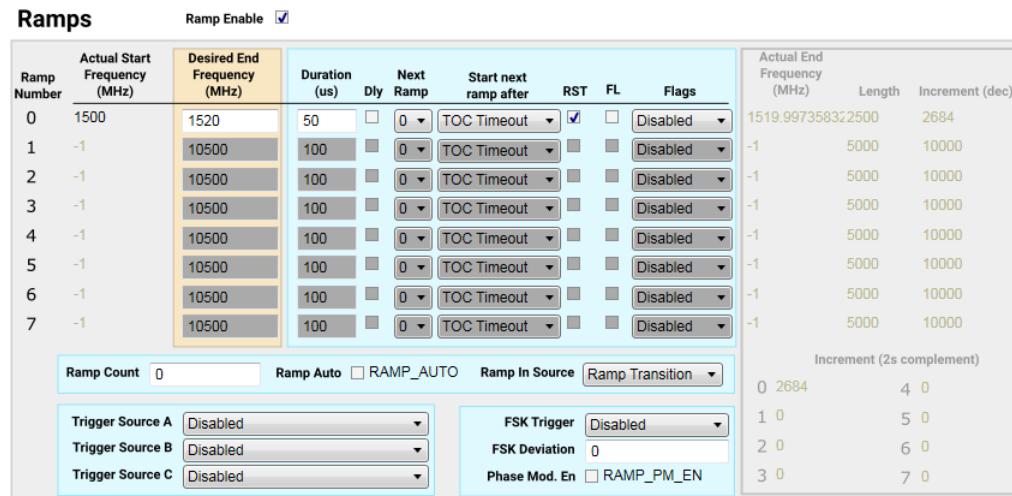
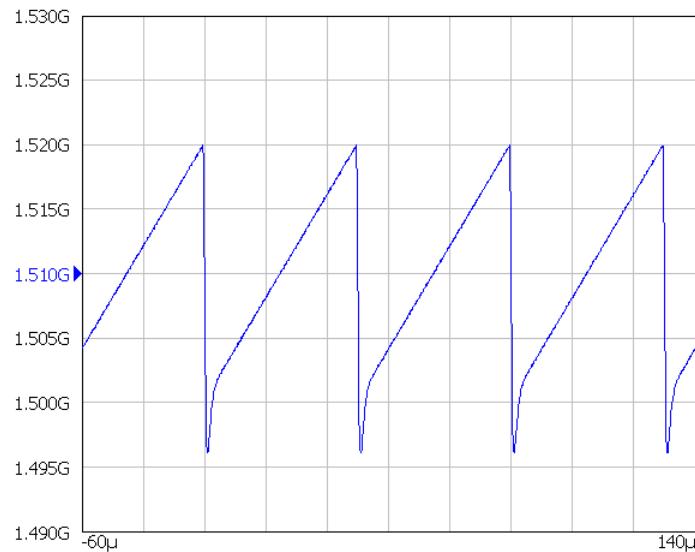


Figure 18. TICS Pro Ramp Calculator


Figure 19. Single Sawtooth Ramp Example

8.2.6 Continuous Sawtooth Ramp Example

This example shows how to generate a continuous sawtooth ramp. Only one ramp segment is necessary as it will loop back to itself.

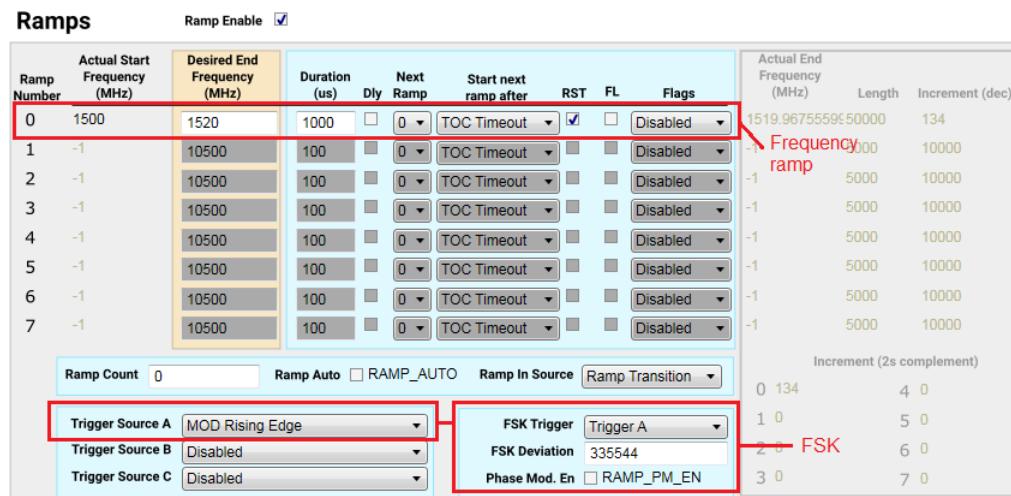
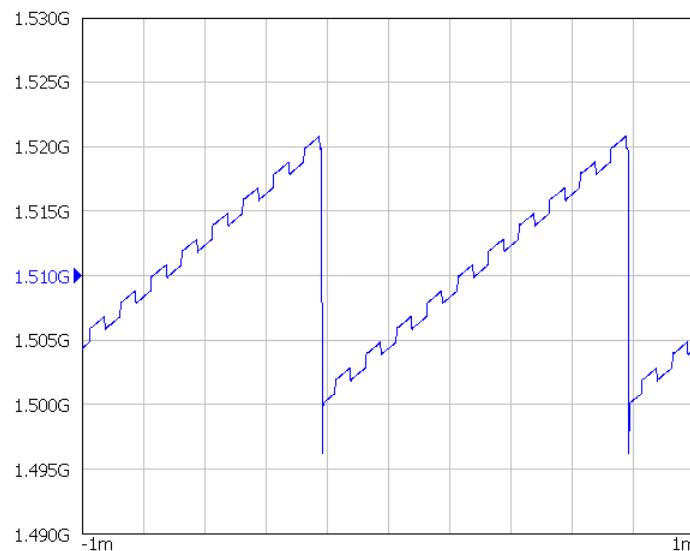


Figure 20. Continuous Sawtooth Ramp Configuration

Figure 21. Continuous Sawtooth Ramp Example

8.2.7 Continuous Sawtooth Ramp with FSK Example

A ramp and FSK can coexist at the same time. Since the amount of FSK is added to the instantaneous carrier, the FSK will appear at the envelope of the ramp. Furthermore, a ramp and FSK are two independent operations, their register settings can be combined in a single configuration setting. That is, when RAMP_EN is enabled, both frequency ramp and FSK will be activated together.

Figure 22. Continuous Sawtooth Ramp with FSK Configuration

Figure 23. Continuous Sawtooth Ramp with FSK Example

8.2.8 Continuous Triangular Ramp Example

Two ramp segments are used to create this ramp pattern. RAMP0 ramps from 1500 MHz to 1520 MHz. RAMP1 brings the frequency back to 1500 MHz and then RAMP0 starts over again. Since RAMP1 already brought the frequency back to 1500 MHz, which is also the start frequency of RAMP0, a reset to fractional numerator is not required.

Limits and Comparators

VCO Output Limit		Register Programming									
High	1550	MHz	Sign	Decimal Value	2's Complement						
Low	1450	MHz	High	0	16777216	16777216					
Valid in Ramp							Low	1	16777216	8573157376	
CMP0 1505 MHz		<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>							
CMP1 1515 MHz		<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Ramp Comparators are enabled

Ramps

Ramp Number	Actual Start Frequency (MHz)	Desired End Frequency (MHz)	Duration (us)		Next Ramp	Start next ramp after	RST	FL	Flags
			Dly	TOC Timeout					
0	1500	1520	25	0	TOC Timeout	25	0	Disabled	Disabled
1	1520.00108361	1500	25	0	TOC Timeout	100	0	Disabled	Disabled
2	-1	10500	100	0	TOC Timeout	100	0	Disabled	Disabled
3	-1	10500	100	0	TOC Timeout	100	0	Disabled	Disabled
4	-1	10500	100	0	TOC Timeout	100	0	Disabled	Disabled
5	-1	10500	100	0	TOC Timeout	100	0	Disabled	Disabled
6	-1	10500	100	0	TOC Timeout	100	0	Disabled	Disabled
7	-1	10500	100	0	TOC Timeout	100	0	Disabled	Disabled

Ramp Count 0 Ramp Auto RAMP_AUTO Ramp In Source Ramp Transition

Trigger Source A: Trigger Source B: Trigger Source C:

FSK Trigger: FSK Deviation: 0 Phase Mod. En: RAMP_PM_EN

No reset here

Actual End Frequency (MHz)	Length	Increment (dec)
1520.001083611250	5369	
1500	1250	-5369
-1	5000	10000
-1	5000	10000
-1	5000	10000
-1	5000	10000
-1	5000	10000

Increment (2s complement)

0	5369	4 0
1	1073736455	5 0
2	0	6 0
3	0	7 0

Figure 24. Continuous Triangular Ramp Configuration

Ramp comparators are enabled so as to output flag signals when the threshold frequencies are hit. MOD pin is assigned for CMP0 while TRIG1 pin is assigned for CMP1. RAMP_CMP0_EN is equal to 3 because ramp segment 0 and 1 are monitored.

General		Output Pins		Speed Up Controls	
PLL Controls	POWERDOWN	Readback	MUXout_MUX	TRIG2_PIN	FL_TOC
CPOL: Positive	Powered Up	<input type="checkbox"/> CPM_FLAGL	<input type="checkbox"/> Output DLD&CPMON	Tristate	0
FRAC_DITHER: Disabled	CPM_THR_HIGH: 50	<input type="checkbox"/> SWRST	<input type="checkbox"/> CPM_FLAGH	MOD_PIN	<input type="checkbox"/> Output - PP
FRAC_ORDER: 2nd Order Modulator	CPM_THR_LOW: 10	Lock Detect	TRIG1_MUX	Output CMP1	<input type="checkbox"/> Output - PP
PFD_DLY: 860 ps		DLD_PASS_CNT: 32	TRIG2_MUX	Input TRIG2	<input type="checkbox"/> MUXOUT_PIN
<input type="checkbox"/> OSC_DIFFR		DLD_TOL: 1 ns	MOD_MUX	Output CMP0	<input type="checkbox"/> Output - PP
		DLD_ERR_CNT: 4	TRIG1_PIN	Output - PP	<input type="checkbox"/> FL_CSR: Disabled
					FL_CPG: <input type="checkbox"/> Disabled

General Ramp Controls		Ramp Comparators		Ramp Limits	
<input type="checkbox"/> RAMP_CLK	RAMP_TRIGC	<input type="checkbox"/> RAMP_AUTO	RAMP_CMP0	RAMP_LIMIT_LOW	RAMP_LIMIT_HIGH
<input checked="" type="checkbox"/> RAMP_EN	Disabled	<input type="checkbox"/> RAMP_PM_EN	1677721	8573157376	16777216
RAMP_TRIGA	RAMP_CNT	FSK_DEV_TRIG	RAMP_CMP0_EN		
Disabled	0	Disabled	3		
RAMP_TRIGB	RAMP_TRIG_INC	FSK_DEV	RAMP_CMP1_EN		
Disabled	Ramp Transition	0	1		

Figure 25. Ramp Comparators Configuration

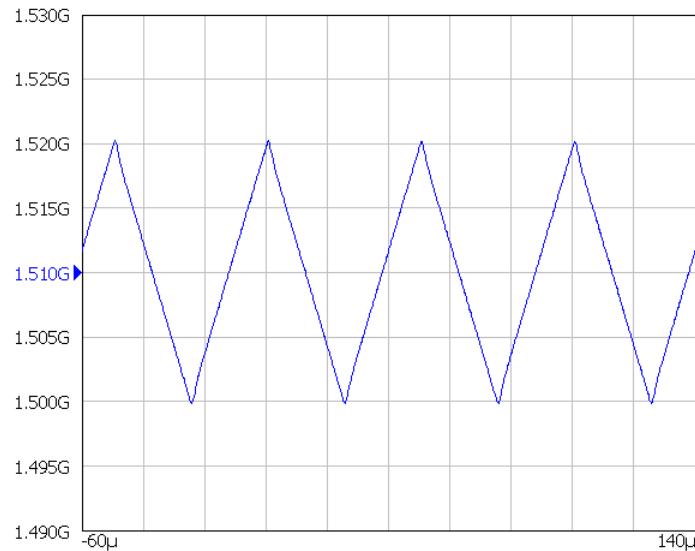
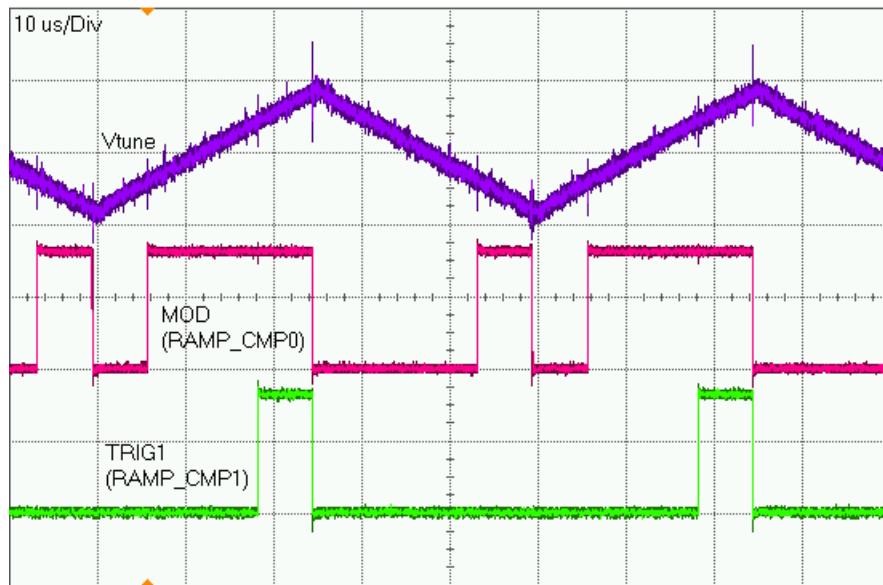
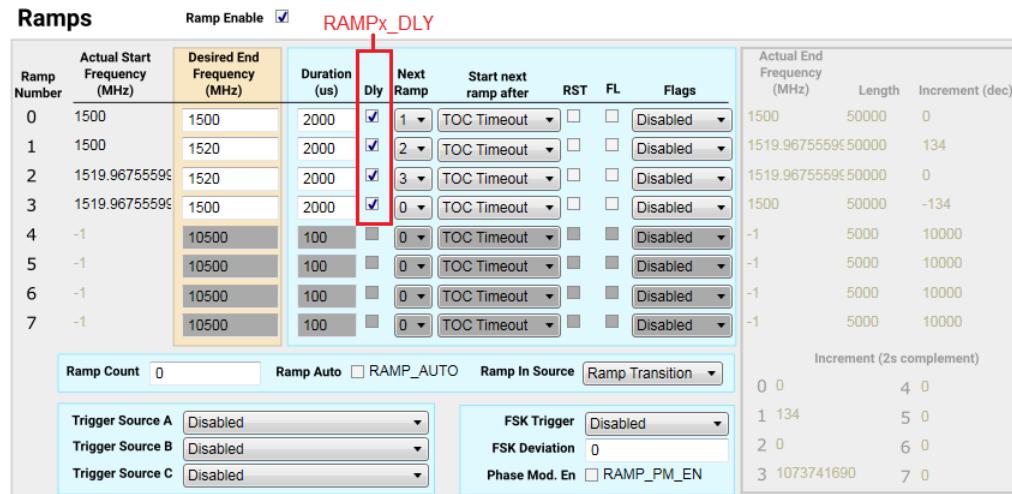
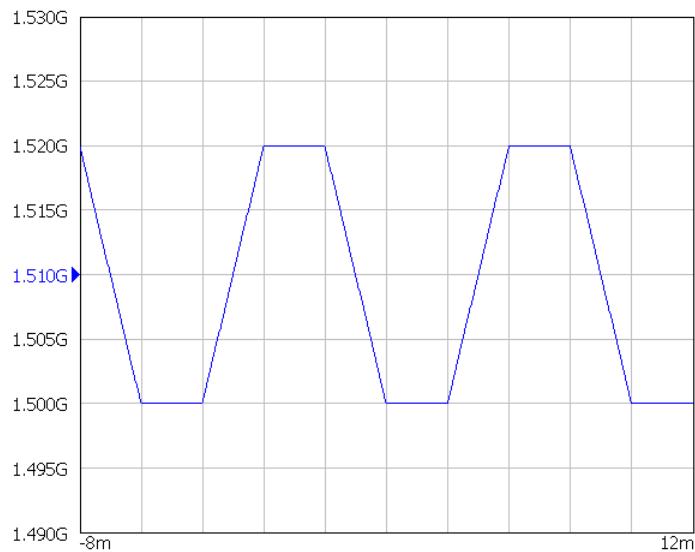


Figure 26. Continuous Triangular Ramp Example




Figure 27. Ramp Comparators Output Flags

8.2.9 Continuous Trapezoid Ramp Example


This is a long-ramp example, the ramp duration is 2 ms. Since $f_{PD} = 50$ MHz, 100000 ramps are required for each ramp segment. However, LMX2491 supports up to a maximum ramp length (RAMPx_LEN) of 65536 only. There are two solutions to resolve this problem:

1. Reduce phase detector frequency. For example, reduce f_{PD} to 25 MHz, then the required RAMPx_LEN becomes 50000.
2. Enable RAMPx_DLY. When this register bit is set, the ramp generator will ramp every 2 phase detector cycles instead of the normal 1 f_{PD} cycle. In this example, this bit is set and as a result, RAMPx_LEN is 50000.

Four ramp segments are used to construct the ramp pattern. Again there is no need to reset the fractional numerator because the last ramp end frequency is equal to the first ramp start frequency.

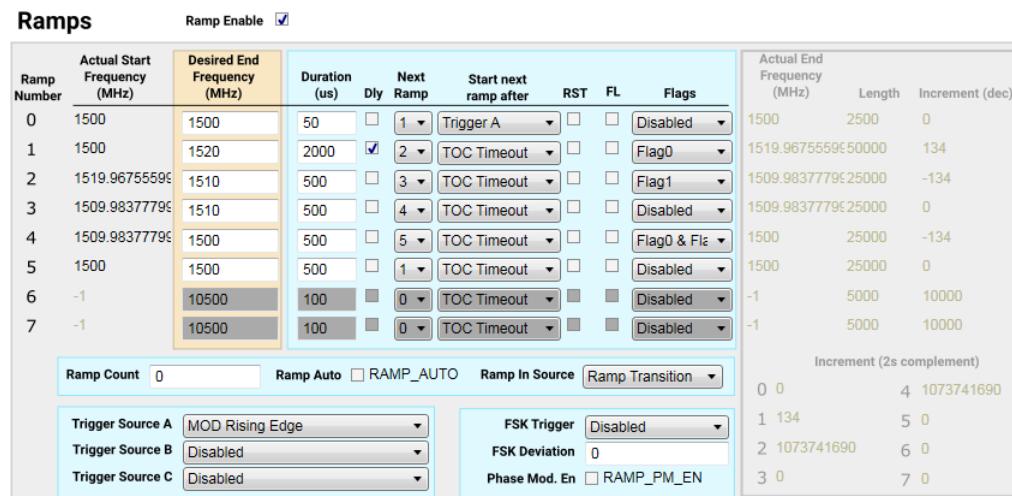
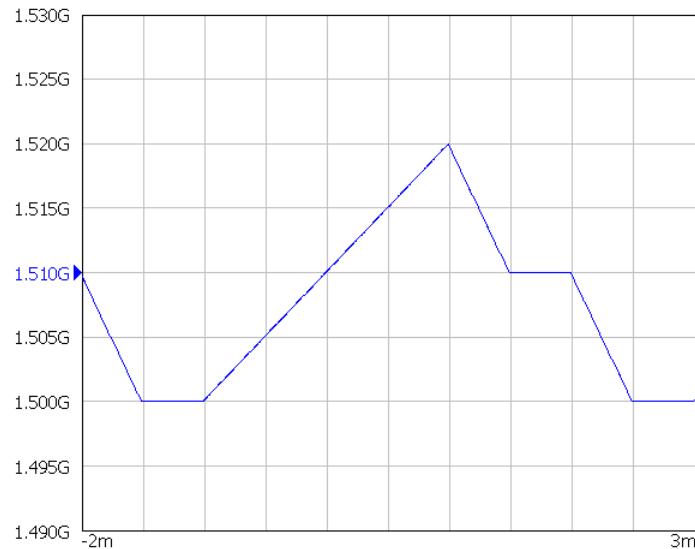


Figure 28. Continuous Trapezoid Ramp Configuration

Figure 29. Continuous Trapezoid Ramp Example

8.2.10 Arbitrary Waveform Ramp Example

An arbitrary ramp waveform can be easily constructed with the 8 ramp segments provided in LMX2491. LMX2491 also provides flag signals output to indicate the start of a ramp. This example used the MOD pin to initiate the ramp and used TRIG1 and TRIG2 as the output flags to indicate the status of the ramp.

Figure 30. Arbitrary Waveform Ramp Configuration

Figure 31. Arbitrary Waveform Ramp Example

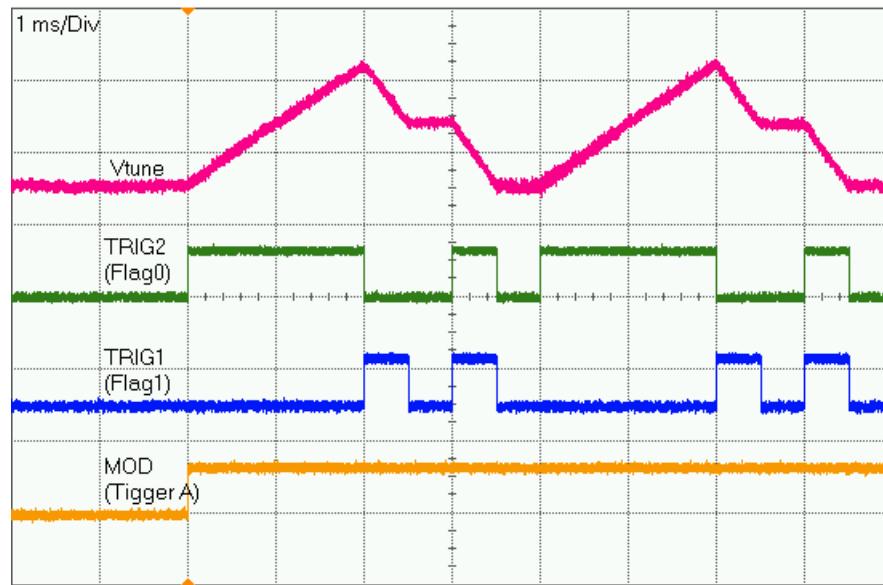
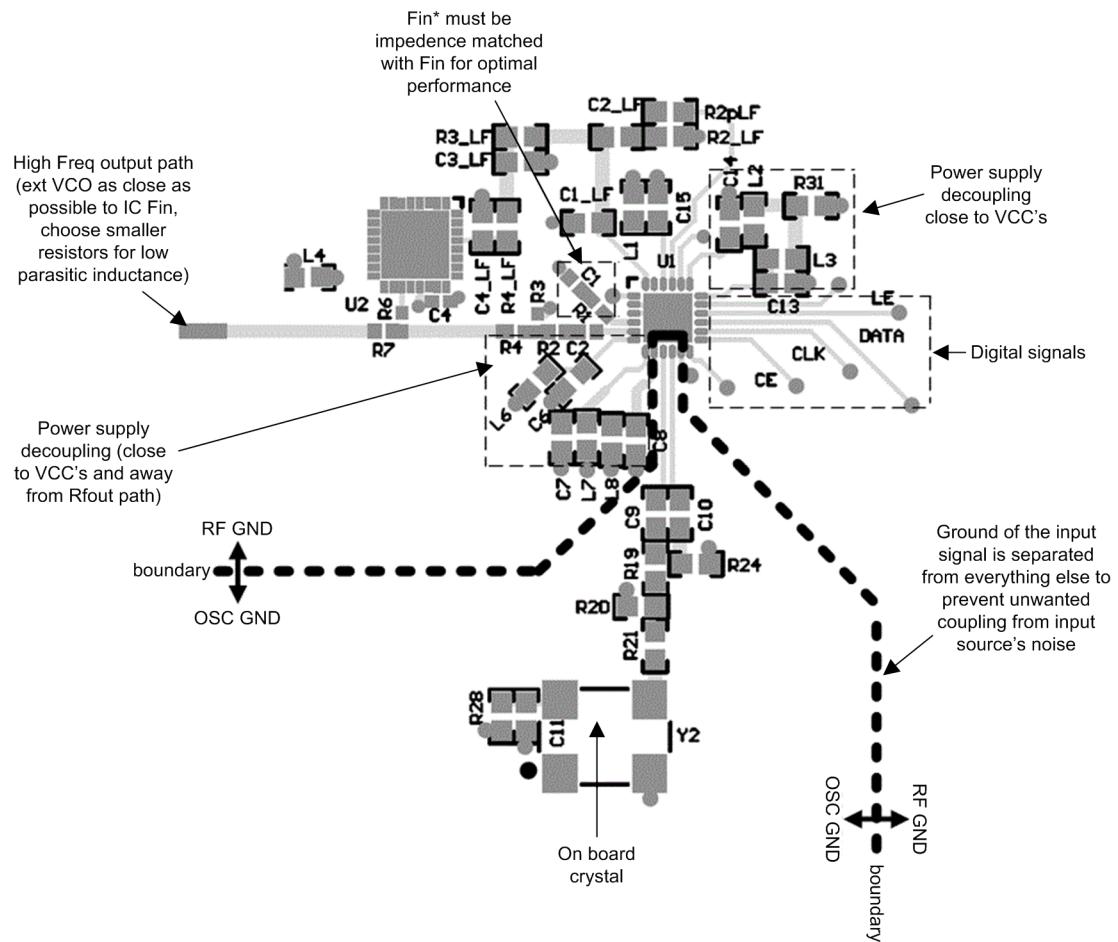


Figure 32. Arbitrary Waveform Ramp Timing

9 Power Supply Recommendations


For power supplies, TI recommends placing 100 nF close to each of the power supply pins. If fractional spurs are a large concern, using a ferrite bead to each of these power supply pins can reduce spurs to a small degree.

10 Layout

10.1 Layout Guidelines

For layout examples, the EVM instructions are the most comprehensive document. In general, the layout guidelines are similar to most other PLL devices. For the high frequency Fin pin, it is recommended to use 0402 components and match the trace width to these pad sizes. Also the same needs to be done on the Fin* pin. If layout is easier to route the signal to Fin* instead of Fin, then this is acceptable as well.

10.2 Layout Example

Figure 33. Layout Recommendation

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

Texas Instruments has several software tools to aid in the development process including TICS Pro for programming, PLLatinum Simulator Tool for loop filter design and phase noise/spur simulation. All these tools are available at www.ti.com.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation, see the following:

- [AN-1879 Fractional N Frequency Synthesis](#) (SNA062)
- [PLL Performance, Simulation, and Design](#)

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community*. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

 ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.7 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LMX2491RTWR	ACTIVE	WQFN	RTW	24	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	X2491	Samples
LMX2491RTWT	ACTIVE	WQFN	RTW	24	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	X2491	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

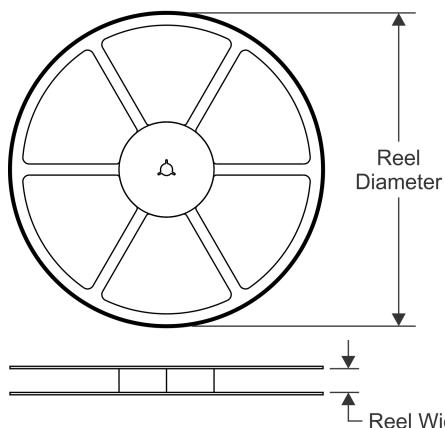
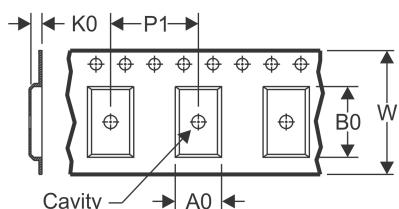
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

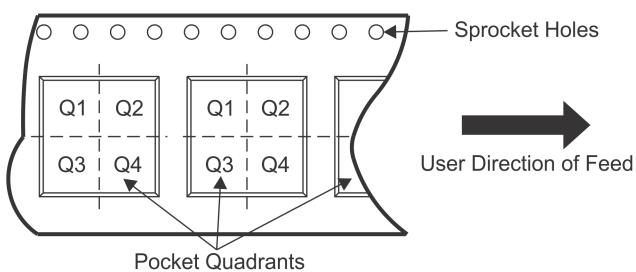
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

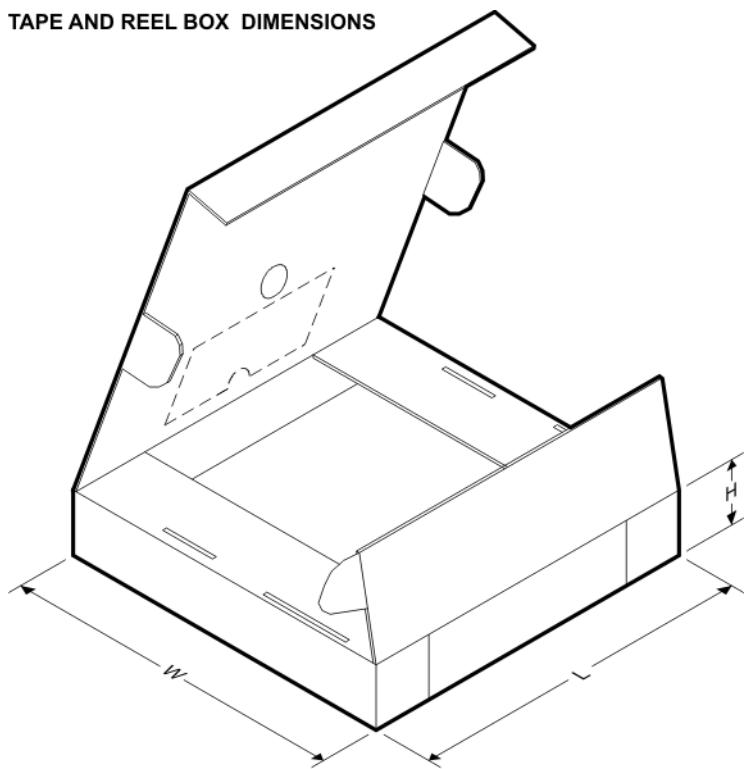
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



www.ti.com

PACKAGE OPTION ADDENDUM


11-Nov-2016

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

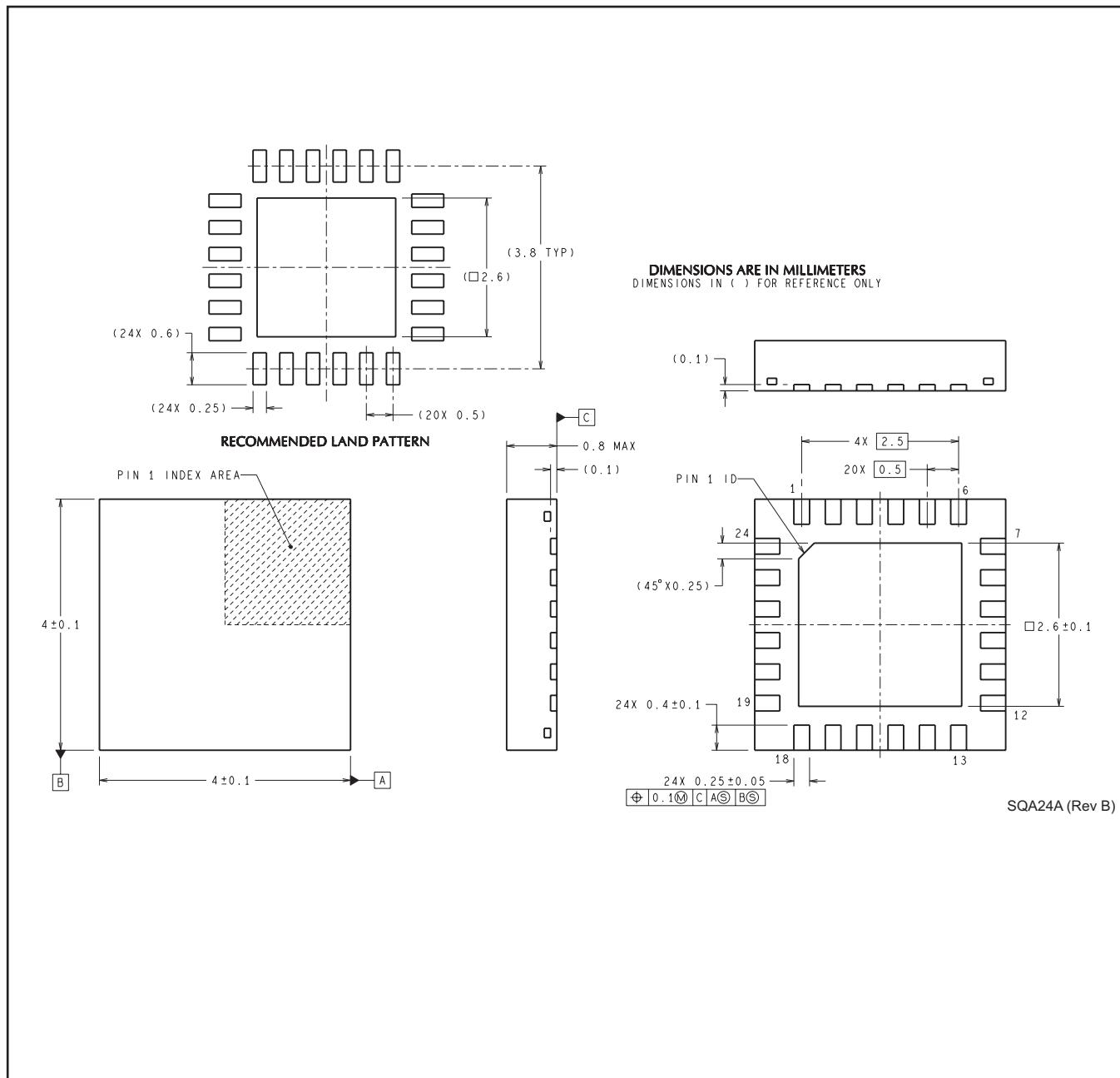
TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMX2491RTWR	WQFN	RTW	24	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LMX2491RTWT	WQFN	RTW	24	250	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1


TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMX2491RTWR	WQFN	RTW	24	1000	210.0	185.0	35.0
LMX2491RTWT	WQFN	RTW	24	250	210.0	185.0	35.0

MECHANICAL DATA

RTW0024A

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (<http://www.ti.com/sc/docs/stdterms.htm>) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.