

TPS7H3301-SP 内置 VREF 的灌电流/拉电流抗辐射加固型 3A DDR 终端稳压器

1 特性

- QML V 类符合 5962-14228⁽¹⁾⁽²⁾
 - 总电离剂量为 100krad (Si)
 - 高剂量率 (HDR) (50-100 rad(Si)/s)
 - 低剂量率 (LDR) (0.01 rad(Si)/s)
 - 单粒子锁定 (SEL)、单粒子栅穿 (SEGR)、单粒子烧毁 (SEB) 对于线性能量传输 (LET) 的抗扰度 = 65MeV-cm²/mg
 - 单粒子瞬变 (SET)、单粒子功能中断 (SEFI)、单粒子翻转 (SEU) 的抗扰度为 65MeV-cm²/mg
(详细信息请参见辐射报告)
- 支持 DDR、DDR2、DDR3、DDR3LP 和 DDR4 终端应用并兼容 JEDEC 标准
- 输入电压：支持 2.5V 和 3.3V 电源轨⁽³⁾
- 独立低电压输入 (VLDOIN) 降至 0.9V 以改善电源效率⁽³⁾
- 具有压降补偿功能的 3A 灌电流/拉电流终端稳压器
- 用于电源排序的使能输入和电源正常输出
- VTT 终端稳压器
 - 输出电压范围：0.5V 至 1.75V
 - 3A 灌电流和拉电流
 - 精度为 $\pm 20\text{mV}$
- 具有感测输入的精密集成压器网络
- 远程感测 (VOSNS)
- VTTREF 缓冲参考输出
 - 精度为 $\text{VDDQ}/2 \pm 1\%$
 - $\pm 10\text{mA}$ 灌/拉电流
- 集成了内置软启动 (SS)、欠压锁定 (UVLO) 以及过流限制 (OCL) 功能

2 应用

- 采用 DDR、DDR2、DDR3 和低功耗 DDR3 和 DDR4 存储器的单电路板计算机、固态记录器和载荷应用
- 超快速瞬态电源应用
- 支持军用温度范围 (-55°C 至 125°C)
- 提供工程评估 (/EM) 组件⁽⁴⁾

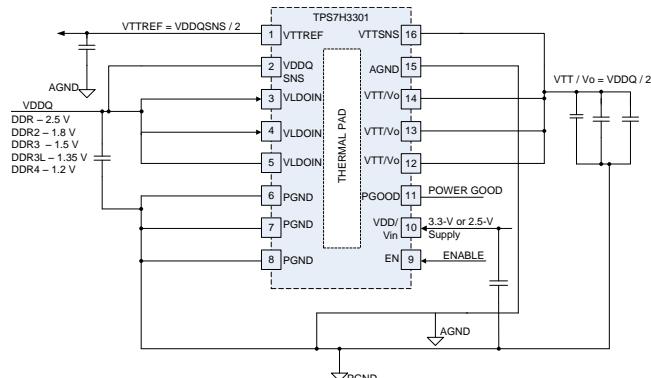
3 说明

TPS7H3301-SP 是一款内置 VREF 的 TID 和单粒子效应 (SEE) 抗辐射加固型双倍数据速率 (DDR) 3A 终端稳压器。该稳压器专门用于为空间 DDR 终端应用 (如单电路板计算机、固态记录器和载荷处理应用) 提供一套完整的紧凑型、低噪声解决方案。

TPS7H3301-SP 支持并兼容 DDR、DDR2、DDR3、DDR4 以及相关的低功耗 JEDEC 规范。凭借快速瞬态响应, TPS7H3301-SP VTT 稳压器可在读取/写入状态下提供稳定性较高的电源。TPS7H3301-SP 还包含一个内置的 VREF 电源。该电源可跟踪 VTT 以进一步缩减解决方案尺寸。在瞬态变化过程中, VREF 电源的快速跟踪功能能够最大限度地降低 VTT 和 VREF 之间的电压偏移。请参见 [说明 \(续\)](#)。

器件信息⁽¹⁾⁽²⁾

器件型号	封装	封装尺寸 (标称值)
TPS7H3301-SP	CFP (16)	9.60mm x 11.00mm


(1) 要了解所有可用封装, 请见数据表末尾的可订购产品附录。

(2) 抗辐射加固保障 (RHA) 当前可达 100krad; 详细信息请联系制造商。

(3) 适用于 DDR2、DDR3、DDR3L 和 DDR4 DDR 的标称输入电压 = 3.3V。V_{INDDR1} 为 2.95V 至 3.5V, 所有 DDR 的 V_{LDQIN} > V_{TT}。DDR2 3A 负载条件下的 Vin 为 2.45V 至 3.5V。
Vin 余量: V_{IN,min} ≥ V_{TT} + 1.5V

(4) 这些部件仅用于工程评估。以非合规性流程对其进行处理 (即未进行老化处理等操作) 并且仅在 25°C 的额定温度下进行了测试。这些部件不适用于质检、生产、辐射测试或飞行。这些零部件无法在 -55°C 至 125°C 的完整 MIL 额定温度范围内或运行寿命中保证其性能。

标准 DDR 应用

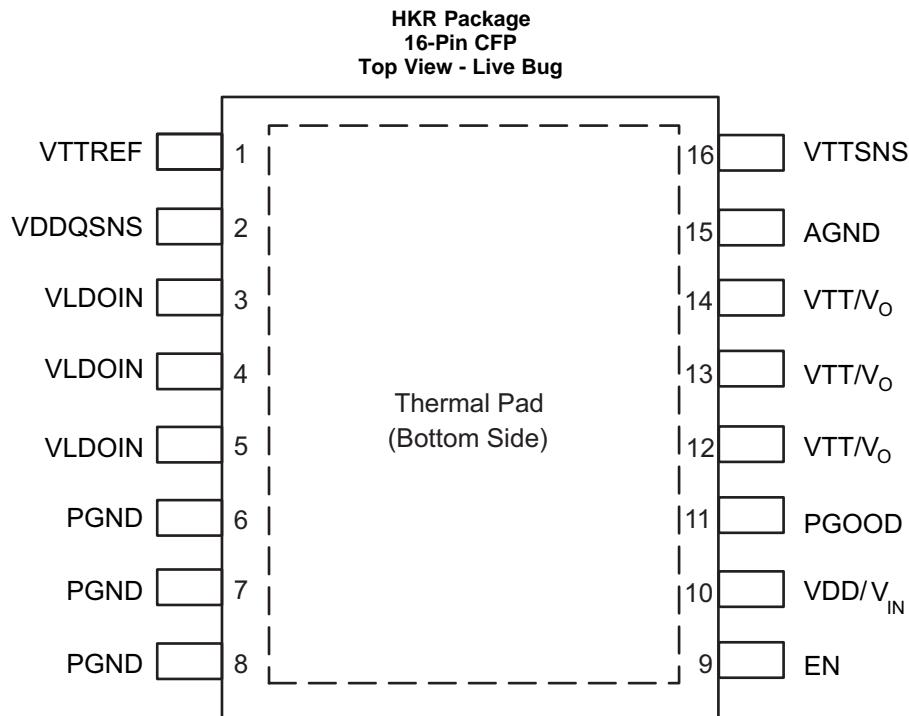
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

English Data Sheet: [SLVSCJ5](#)

目录

1	特性	1	8.4	Device Functional Modes	14
2	应用	1	9	Application and Implementation	15
3	说明	1	9.1	Application Information	15
4	修订历史记录	2	9.2	Typical Application	15
5	说明 (续)	3	10	Power Supply Recommendations	23
6	Pin Configuration and Functions	4	11	Layout	24
7	Specifications	5	11.1	Layout Guidelines	24
	7.1 Absolute Maximum Ratings	5	11.2	Layout Example	24
	7.2 ESD Ratings	5	11.3	Thermal Considerations	25
	7.3 Recommended Operating Conditions	5	12	器件和文档支持	26
	7.4 Thermal Information	5	12.1	器件支持	26
	7.5 Electrical Characteristics	6	12.2	社区资源	26
	7.6 Typical Characteristics	8	12.3	商标	26
8	Detailed Description	12	12.4	静电放电警告	26
	8.1 Overview	12	12.5	Glossary	26
	8.2 Functional Block Diagram	12	13	机械、封装和可订购信息	26
	8.3 Feature Description	12			

4 修订历史记录


日期	修订版本	注释
2015 年 12 月	*	最初发布版本

5 说明 (续)

为了简单的启用电源排序，使能输入和电源正常输出 (PGOOD) 已在 TPS7H3301-SP 中集成。PGOOD 输出是开漏输出，因此可在所有电源进入稳压状态时将其与多个开漏输出相连来进行监控。使能信号还可用于在挂起至 RAM (S3) 断电模式时使 VTT 放电。

TPS7H3301-SP 采用 TI 常用的 16 引脚耐热增强型双陶瓷扁平封装 (HKR)，TPS7H1101-SP 同样采用这种封装。

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
VTTREF	1	O	Reference output. Connect to GND through 0.1- μ F ceramic capacitor.
VDDQSNS	2	I	VDDQ sense input. Reference input for VTTREF.
VLDOIN	3	I	Supply voltage for the LDO. Connect to VDDQ voltage or an alternate voltage source.
	4		
	5		
PGND	6	—	Power ground. Connect output for the VTT/ V_o LDO to negative pin of the output capacitor.
	7		
	8		
EN	9	I	Enable pin. Driving this pin to logic high enables the device; driving this pin to logic low disables the device.
VDD/ V_{IN}	10	I	2.5- or 3.3-V power supply. A ceramic decoupling capacitor with a value between 1 and 10 μ F is required.
PGOOD	11	O	PGOOD output pin. PGOOD pin is an open drain output to indicate the output voltage is within specification.
VTT/ V_o	12	O	Power output for VTT LDO
	13		
	14		
AGND	15	—	Signal ground. Connect to negative pin of output capacitors. ⁽¹⁾
VTTNSNS	16	I	VDDQ sense input, reference input for VTTREF. Voltage sense for VTT/ V_o . Connect to positive pin of the output capacitor or the load.

(1) Thermal pad must be connected to GND.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature, unless otherwise noted⁽¹⁾

		MIN	MAX	UNIT
Input voltage ⁽²⁾	V_{IN} /VDD, VLDOIN, VTTNSNS, VDDQSNS	-0.36	3.6	V
	EN	-0.3	6.5	
	PGND to AGND	-0.3	0.3	
Output voltage ⁽²⁾	V_O /VTT, VTTREF	-0.3	3.6	V
	PGOOD	-0.3	3.6	
Peak output current		Internally limited		A
PG pin sink current		5		mA
T_J	Maximum operating junction temperature	-55	150	°C
T_{stg}	Storage temperature	-55	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the network ground pin unless otherwise noted.

7.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	± 4000
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	± 750

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
Supply voltage	V_{IN} / VDD	2.375	3.5	V	
Voltage	VLDOIN	0.9	3.5		
	EN, VTTNSNS	-0.1	3.5		
	VDDQSNS	1.0	3.5		
	V_O / VTT, PGOOD	-0.1	3.5		
	VTTREF	-0.1	1.8		
	PGND	-0.1	0.1		
T_J	Operating junction temperature	-55	125	°C	

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾ (2) (3)		TPS7H3301-SP	UNIT
		HKR (CFP)	
		16 PINS	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	0.6	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

(2) Do not allow package body temperature to exceed 265°C at any time or permanent damage may result.

(3) Maximum power dissipation may be limited by overcurrent protection.

7.5 Electrical Characteristics

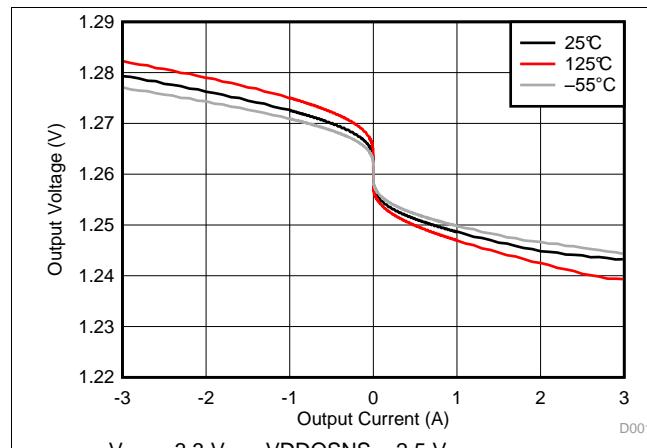
Over full temperature range, -55°C to 125°C , $V_{\text{IN/VDD}} = 3.3 \text{ V}$ and 2.375 V , $V_{\text{VLDOIN}} = 1.8 \text{ V}$, $V_{\text{VDDQSNS}} = 1.8 \text{ V}$, $V_{\text{VOSNS/VTSNS}} = 0.9 \text{ V}$, $V_{\text{EN}} = V_{\text{VIN/VDD}}$, **标准 DDR 应用** (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CURRENT					
$I_{\text{IN}}/I_{\text{VDD}}$	Supply current	$V_{\text{EN}} = 3.3 \text{ V}$, No Load	18	30	mA
$I_{\text{VDD(SDN)}}$	Shutdown current	$V_{\text{EN}} = 0 \text{ V}$, $V_{\text{VDDQSNS}} = 0$, No Load	3	5	mA
		$V_{\text{EN}} = 0 \text{ V}$, $V_{\text{VDDQSNS}} > 0.78 \text{ V}$, No Load	6.5	8	
I_{LDOIN}	Supply current of VLDOIN	$V_{\text{EN}} = 3.3 \text{ V}$, No Load	575	1200	μA
$I_{\text{LDOIN(SDN)}}$	Shutdown current of VLDOIN	$V_{\text{EN}} = 0 \text{ V}$, No Load	50	100	μA
INPUT CURRENT					
I_{VDDQsns}	Input current, VDDQsns	$V_{\text{EN}} = 3.3 \text{ V}$	4	6	μA
$V_{\text{O}}/V_{\text{TT}}$ OUTPUT					
$V_{\text{VOSNS/VTSNS}}$	Output DC voltage, V_{O}	$V_{\text{LDOIN}} = 2.5 \text{ V}$, $V_{\text{VTTREF}} = 1.25 \text{ V}$ (DDR1), $I_{\text{O}} = 0 \text{ A}$	1.25		V
			-6	6	mV
		$V_{\text{LDOIN}} = 1.8 \text{ V}$, $V_{\text{VTTREF}} = 0.9 \text{ V}$ (DDR2), $I_{\text{O}} = 0 \text{ A}$	0.9		V
			-6	6	mV
		$V_{\text{LDOIN}} = 1.5 \text{ V}$, $V_{\text{VTTREF}} = 0.75 \text{ V}$ (DDR3), $I_{\text{O}} = 0 \text{ A}$	0.75		V
			-6	6	mV
		$V_{\text{LDOIN}} = 1.35 \text{ V}$, $V_{\text{VTTREF}} = 0.675 \text{ V}$ (DDR3L), $I_{\text{O}} = 0 \text{ A}$	0.675		V
			-6	6	mV
		$V_{\text{LDOIN}} = 1.20 \text{ V}$, $V_{\text{VTTREF}} = 0.60 \text{ V}$ (DDR4), $I_{\text{O}} = 0 \text{ A}$	0.60		V
			-6	6	mV
$V_{\text{LODIN}} - V_{\text{TT}}^{(1)}$	$V_{\text{LODIN}} > V_{\text{TT}}$	$V_{\text{IN}}/V_{\text{DD}} = 2.95 \text{ V}$, $V_{\text{VDDQSNS}} = 2.50 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR1), $I_{\text{O}} = 0.5 \text{ A}$	50	230	mV
			101	300	
		$V_{\text{IN}}/V_{\text{DD}} = 2.95 \text{ V}$, $V_{\text{VDDQSNS}} = 2.50 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR1), $I_{\text{O}} = 2.0 \text{ A}^{(2)}$	209	400	
			54	230	
		$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.80 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR2), $I_{\text{O}} = 0.5 \text{ A}^{(2)}$	108	300	
			228	400	
		$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.80 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR2), $I_{\text{O}} = 1 \text{ A}^{(2)}$	52	230	
			104	300	
		$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.50 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR3), $I_{\text{O}} = 0.5 \text{ A}$	216	400	
			50	230	
		$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.50 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR3), $I_{\text{O}} = 2.0 \text{ A}^{(2)}$	102	300	
			212	400	
		$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.35 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR3L), $I_{\text{O}} = 0.5 \text{ A}$	50	230	
			102	300	
$V_{\text{VOTOL/VTTTOL}}$	Output voltage tolerance to V_{VTTREF}	$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.35 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR3L), $I_{\text{O}} = 1 \text{ A}^{(2)}$	50	230	mV
			210	400	
		$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.20 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR4), $I_{\text{O}} = 0.5 \text{ A}$	102	300	
			12	25	
		$V_{\text{IN}}/V_{\text{DD}} = 2.375 \text{ V}$, $V_{\text{VDDQSNS}} = 1.20 \text{ V}$, $V_{\text{TT}} = V_{\text{VTTREF}} - 50 \text{ mV}$ (DDR4), $I_{\text{O}} = 2.0 \text{ A}^{(2)}$	-34	-25	
			3.25	8	
		I_{VOSRCL}	With reference to V_{VTTREF} , $V_{\text{VTSNS}} = 90\% \times V_{\text{VTTREF}}$	-12	

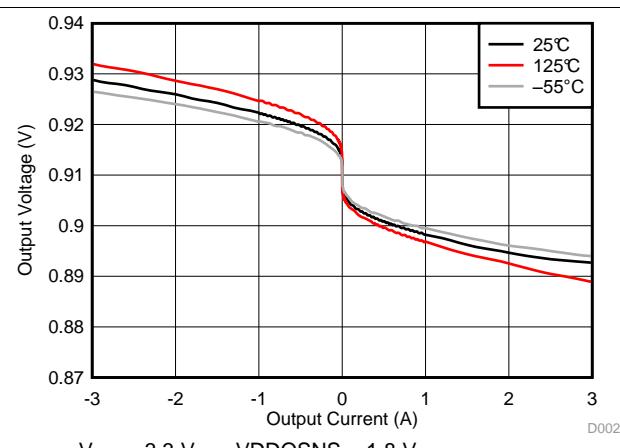
(1) Dropout / Headroom information provided to help designer in optimizing system efficiency

(2) Specified by characterization and not production tested

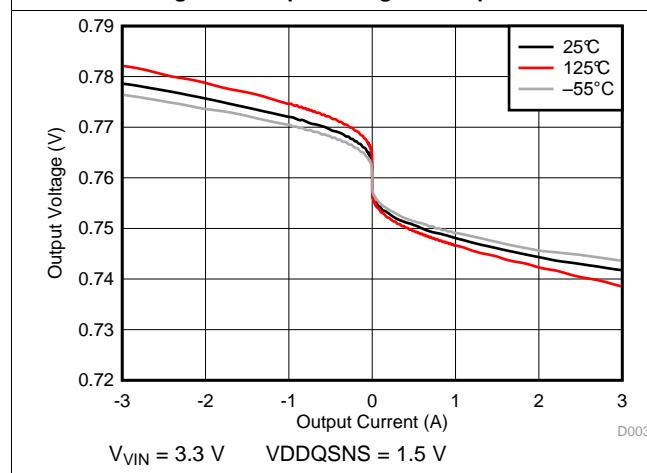
Electrical Characteristics (continued)

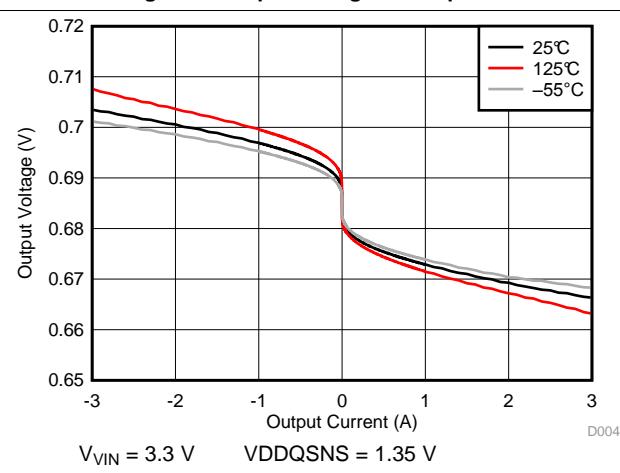

Over full temperature range, -55°C to 125°C , $V_{\text{IN/VDD}} = 3.3 \text{ V}$ and 2.375V , $V_{\text{VLDOIN}} = 1.8 \text{ V}$, $V_{\text{VDDQSNS}} = 1.8 \text{ V}$, $V_{\text{VOSNS/VTSNS}} = 0.9 \text{ V}$, $V_{\text{EN}} = V_{\text{VIN/VDD}}$, **标准 DDR 应用** (unless otherwise noted)

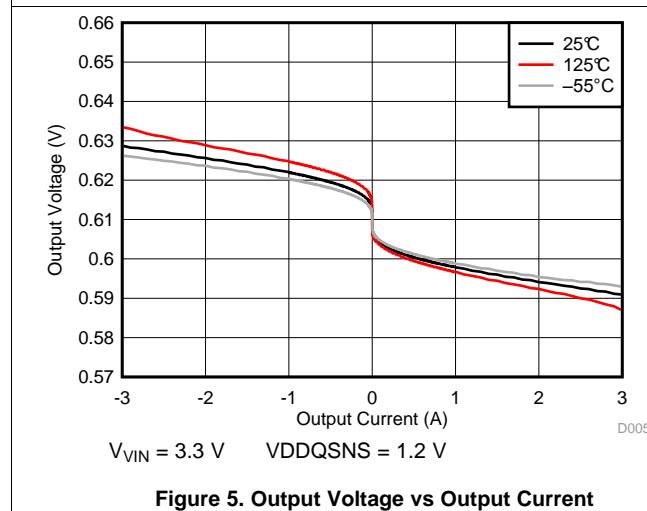
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_{VOSNCL}	$V_{\text{VO/VTT}}$ sink current limit With reference to V_{VTTREF} , $V_{\text{VTSNS}} = 110\% \times V_{\text{VTTREF}}$	3.5		5.5	A
R_{DSCHRG}	Discharge impedance, Ω $V_{\text{DDQSNS}} = 0 \text{ V}$, $V_{\text{VO}} = 0.3 \text{ V}$, $V_{\text{EN}} = 0 \text{ V}$, $T_A = 25^{\circ}\text{C}$		18	25	Ω
POWERGOOD COMPARATOR					
$V_{\text{TH(PG)}}$	PGOOD window lower threshold with respect to V_{VTTREF}	-23.5%	-20%	-17.5%	
	PGOOD window upper threshold with respect to V_{VTTREF}	17.5%	20%	23.5%	
	PGOOD hysteresis		5%		
$T_{\text{PGSTUPDLY}}$	PGOOD startup delay Startup rising edge, V_{OSNS} within 15% of V_{VTTREF}		2		ms
V_{PGOODLOW}	Output low voltage $I_{\text{SINK}} = 4 \text{ mA}$			0.4	V
T_{PBADDLY}	PGOOD bad delay V_{OSNS} is outside of the $\pm 20\%$ PGOOD window		1		μs
I_{PGOODLK}	Leakage current $V_{\text{OSNS}} = V_{\text{REFIN}}$ (PGOOD high impedance), PGOOD = $V_{\text{IN}} + 0.2 \text{ V}$			1	μA
V_{DDQSNS} AND V_{VTTREF} OUTPUT					
V_{DDQSNS}	V_{DDQSNS} voltage range	1.0	2.80		V
$V_{\text{DDQSNS_UVLO}}$	V_{DDQSNS} undervoltage lockout V_{DDQSNS} rising		780		mV
$V_{\text{DDQSNSUVHYS}}$	V_{DDQSNS} undervoltage lockout hysteresis		20		mV
V_{VTTREF}	V_{VTTREF} voltage		$V_{\text{DDQSNS}} / 2$		V
V_{VTTREF}	V_{VTTREF} voltage tolerance to V_{DDQSNS} -10 mA < I_{VTTREF} < 10 mA, $V_{\text{DDQSNS}} = 2.5 \text{ V}$	-15	15		mV
	-10 mA < I_{VTTREF} < 10 mA, $V_{\text{DDQSNS}} = 1.8 \text{ V}$	-15	15		
	-10 mA < I_{VTTREF} < 10 mA, $V_{\text{DDQSNS}} = 1.5 \text{ V}$	-15	15		
	-10 mA < I_{VTTREF} < 10 mA, $V_{\text{DDQSNS}} = 1.35 \text{ V}$	-15	15		
	-10 mA < I_{VTTREF} < 10 mA, $V_{\text{DDQSNS}} = 1.2 \text{ V}$	-15	15		
$I_{\text{VTTREFSRCL}}$	V_{VTTREF} source current limit $V_{\text{VTTREF}} = 0 \text{ V}$	10	40		mA
$I_{\text{VTTREFSNCL}}$	V_{VTTREF} sink current limit $V_{\text{VTTREF}} = 0 \text{ V}$	6	40		mA
$I_{\text{VTTREFDIS}}$	V_{VTTREF} discharge current $EN = 0 \text{ V}$, $V_{\text{DDQSNS}} = 0 \text{ V}$, $V_{\text{VTTREF}} = 0.5 \text{ V}$		1.3		mA
UVLO/EN LOGIC THRESHOLD					
V_{VINUVVIN}	UVLO threshold Wake up, $T_A = 25^{\circ}\text{C}$	2.18	2.25		V
	Hysteresis		50		mV
V_{ENIH}	High-level input voltage Enable	1.7			V
V_{ENIL}	Low-level input voltage Enable			0.3	
V_{ENYST}	Hysteresis voltage Enable		0.5		
I_{ENLEAK}	Logic input leakage current EN , $T_A = 25^{\circ}\text{C}$	-1	1		μA
THERMAL SHUTDOWN					
T_{SON}	Thermal shutdown threshold (3)	Shutdown temperature	210		$^{\circ}\text{C}$
		Hysteresis	12		


(3) Ensured by design, not production tested

7.6 Typical Characteristics


For [Figure 1](#) through [Figure 15](#), (3 × 150 μ F T530D157M010ATE005 tantalum + 4 × 4.7 μ F MLCC) or equivalent capacitance/ESR are used on the output.


Figure 1. Output Voltage vs Output Current


Figure 2. Output Voltage vs Output Current

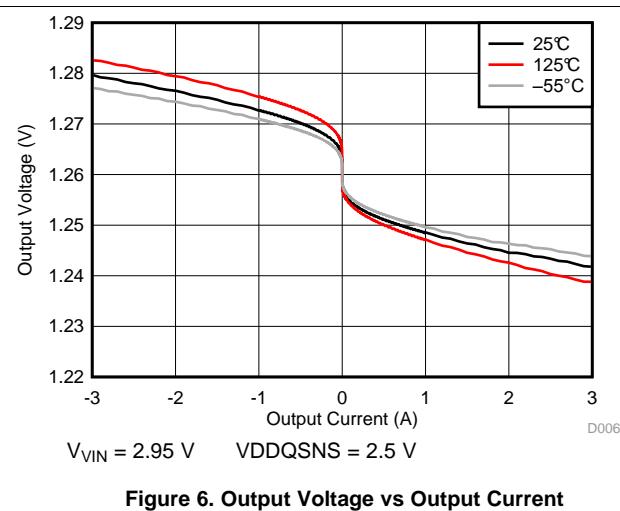

Figure 3. Output Voltage vs Output Current

Figure 4. Output Voltage vs Output Current

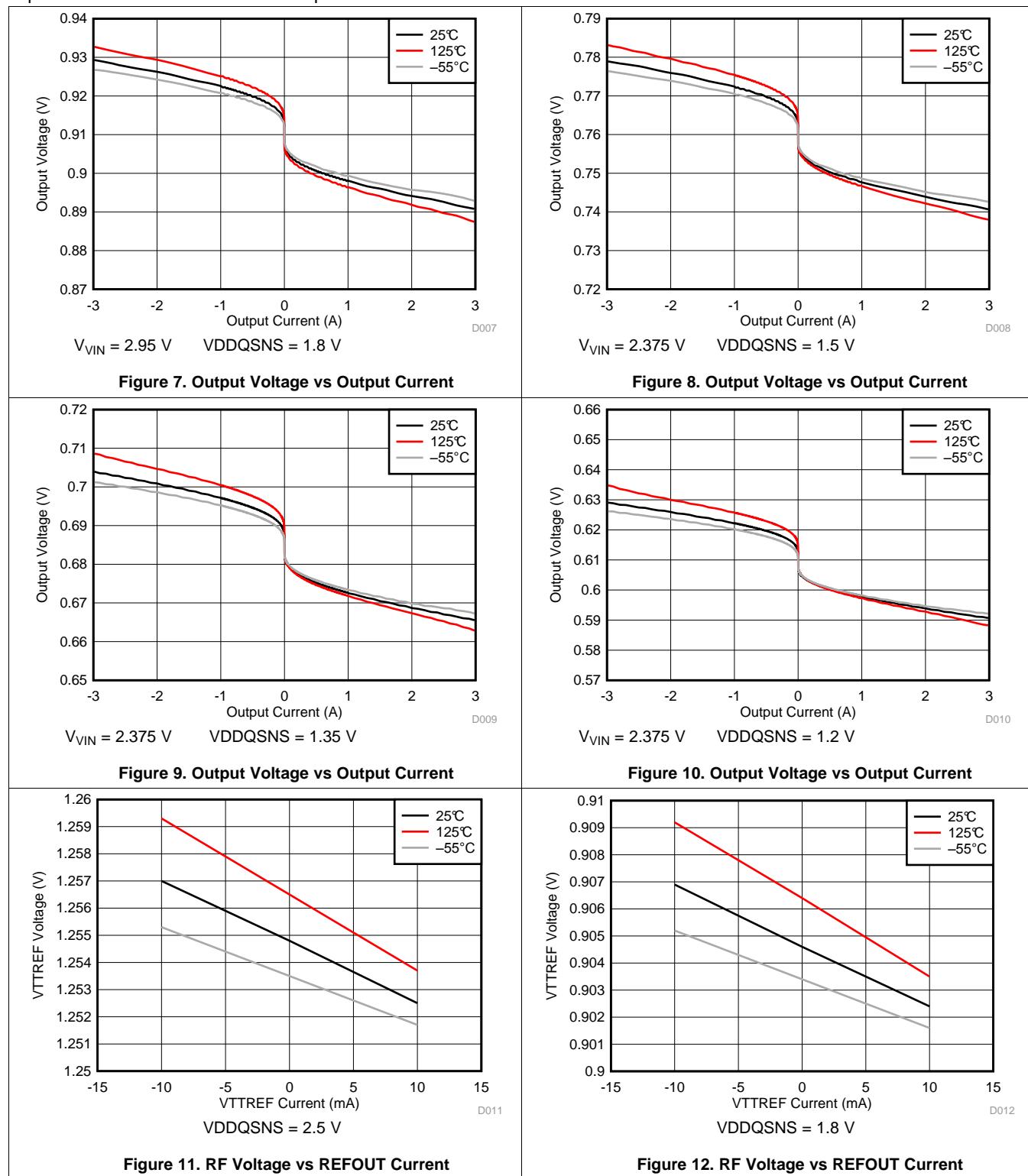

Figure 5. Output Voltage vs Output Current

Figure 6. Output Voltage vs Output Current

Typical Characteristics (continued)

For Figure 1 through Figure 15, (3 × 150 μ F T530D157M010ATE005 tantalum + 4 × 4.7 μ F MLCC) or equivalent capacitance/ESR are used on the output.

Typical Characteristics (continued)

For Figure 1 through Figure 15, (3 × 150 μ F T530D157M010ATE005 tantalum + 4 × 4.7 μ F MLCC) or equivalent capacitance/ESR are used on the output.

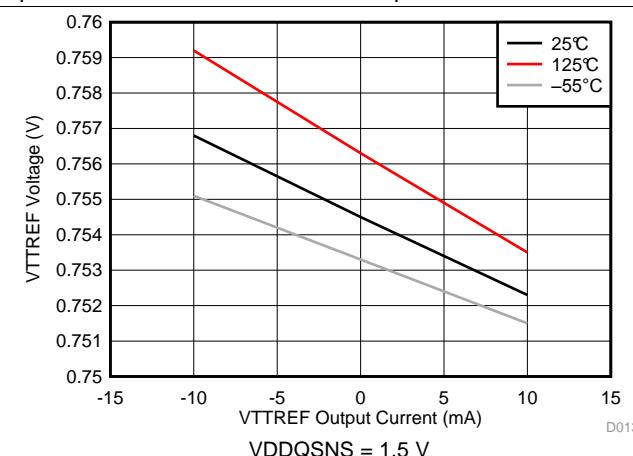


Figure 13. RF Voltage vs REFOUT Current

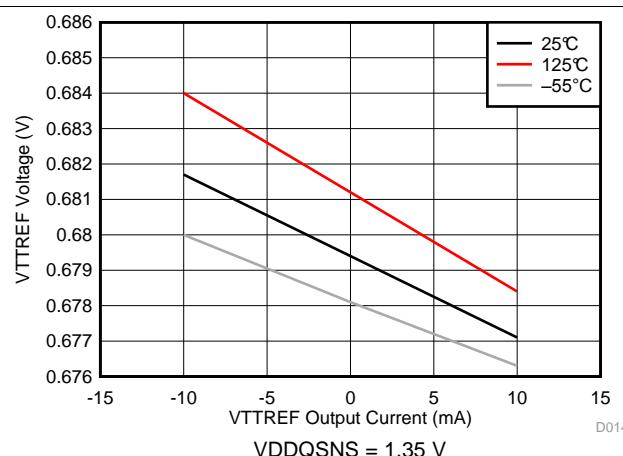


Figure 14. RF Voltage vs REFOUT Current

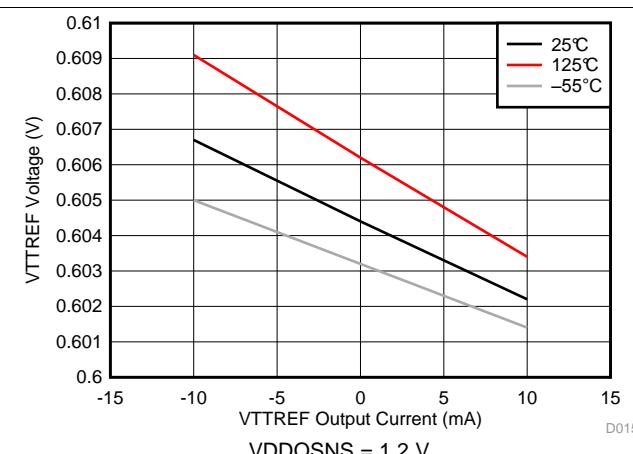


Figure 15. RF Voltage vs REFOUT Current

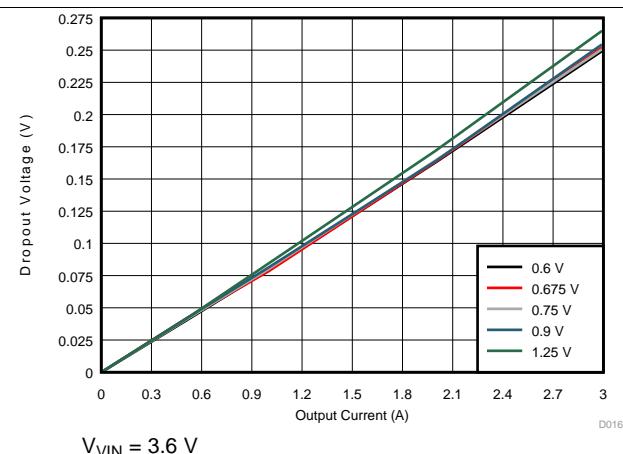


Figure 16. Dropout Voltage vs Output Current

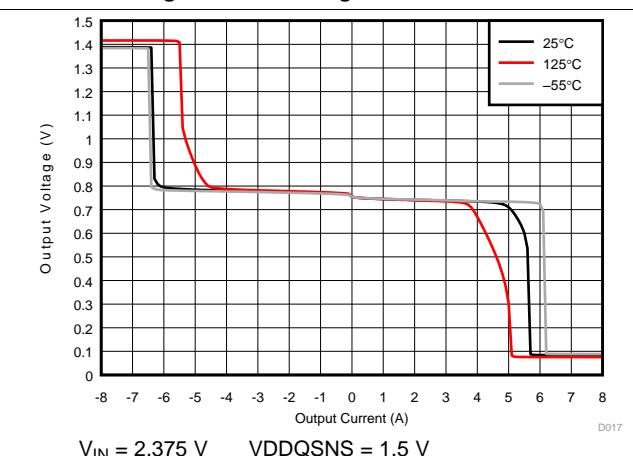


Figure 17. Output Voltage vs Output Current, DDR3

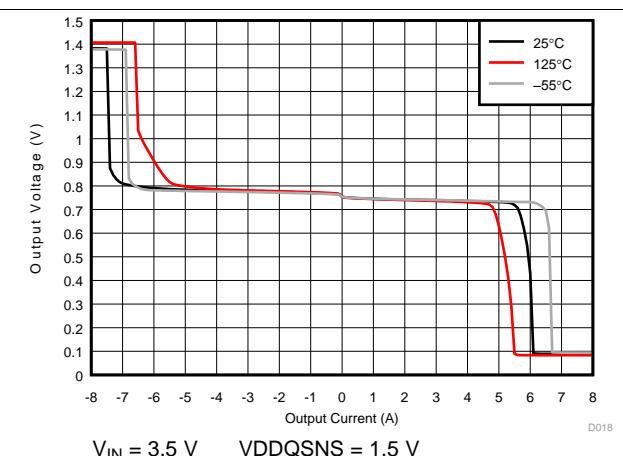
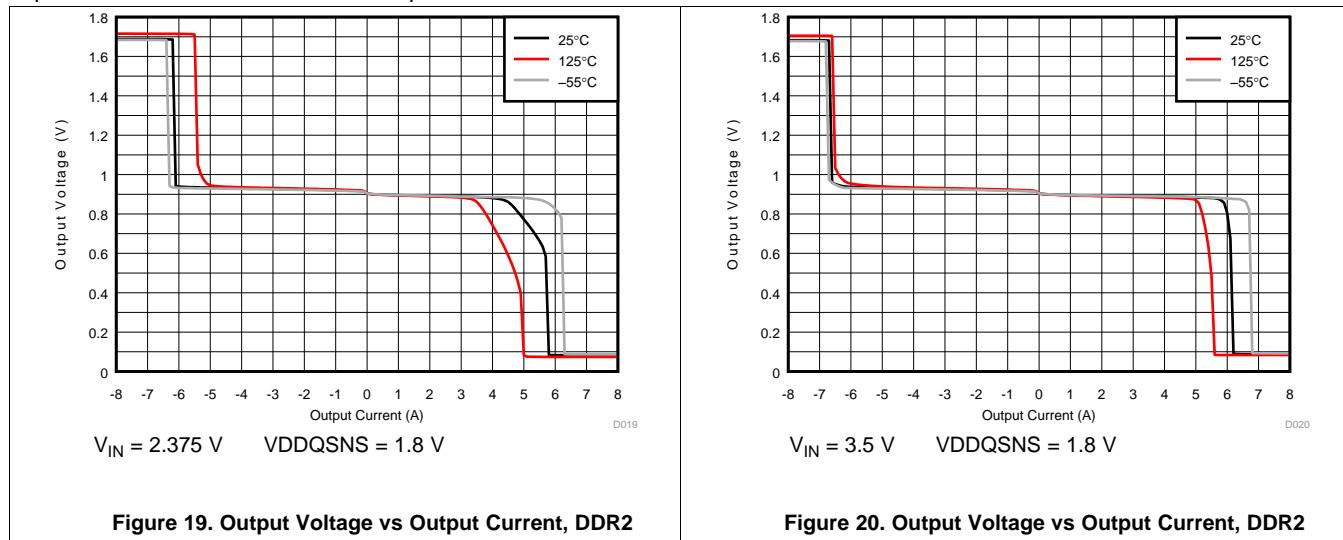
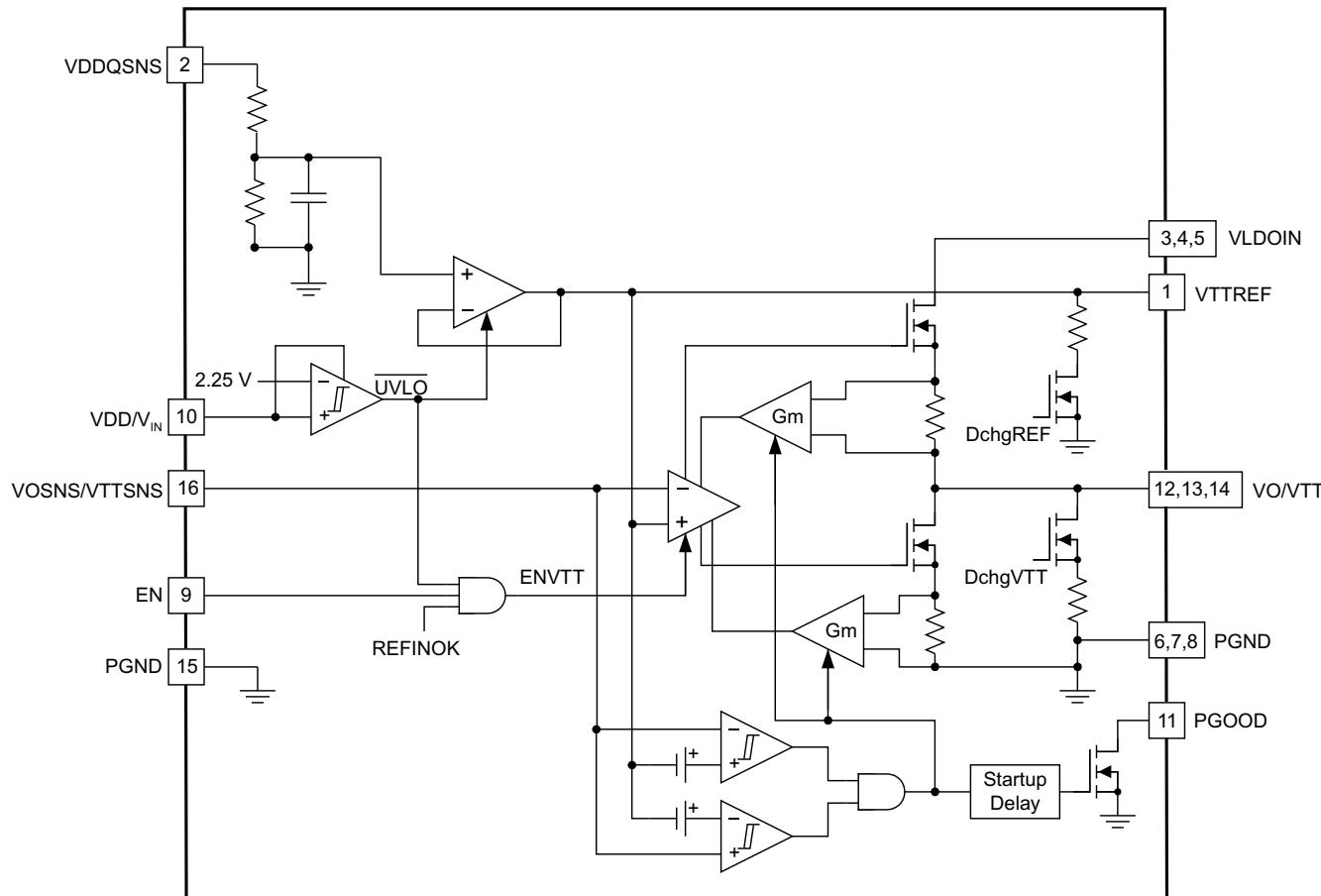



Figure 18. Output Voltage vs Output Current, DDR3

Typical Characteristics (continued)

For Figure 1 through Figure 15, (3 × 150 μ F T530D157M010ATE005 tantalum + 4 × 4.7 μ F MLCC) or equivalent capacitance/ESR are used on the output.



8 Detailed Description

8.1 Overview

The TPS7H3301-SP device is a sink and source double data rate (DDR) termination regulator specifically designed for low input voltage, low-cost, low-noise systems where space and weight is a key consideration.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 VO Sink/Source Regulator

The TPS7H3301-SP is a 3A sink/source tracking termination regulator specifically designed for low input voltage, low-cost, and low external component count systems where space is a key application parameter. The TPS7H3301-SP integrates a high-performance, low-dropout (LDO) linear regulator that is capable of both sourcing and sinking current. The LDO regulator employs a fast feedback loop so that ceramic capacitors can be used to support the fast load transient response. To achieve tight regulation with minimum effect of trace resistance, a remote sensing pin, VOSNS/VTSNS, should be connected to the positive pin of the output capacitor(s) as a separate trace from the high current path from Vo/VTT.

The TPS7H3301-SP has a dedicated pin VLDOIN, for VTT power supply to minimize the LDO power dissipation on user application. The minimum VLDOIN voltage is 400mV above the 1/2 VDDQSNS voltage or as highlighted in electrical table VLDOIN to VTT headroom for various load conditions.

Feature Description (continued)

8.3.2 Reference Input (VDDQSNS)

The output voltage, Vo/VTT, is regulated to VTTREF. VDDQSNS incorporates integrated resistor divider network. VDDQSNS can be connected to memory supply bus (VDDQ). VDDQSNS should be connected to the memory supply bus (VDDQ). The TPS7H3301-SP supports VDDQSNS voltage from 1.0 V to 3.5 V, making it versatile and ideal for many types of low-power LDO applications.

8.3.3 Reference Output (VTTREF)

When it is configured for DDR termination applications, VTTREF generates the DDR VTT reference voltage for the memory application. VTTREF block consists of an on-chip 1/2 divider and a low-pass filter (LPF). VTTREF tracks 1/2 of VDDQSNS with 1% accuracy. It is capable of supporting both a sourcing and sinking load of 10 mA. VTTREF becomes active when VDDQSNS voltage rises to 0.78 V and Vin/VDD is above the UVLO threshold. When VTTREF is less than 0.375 V, VTTREF is disabled and subsequently discharges to GND through an internal MOSFET. VO/ VTT is also discharged following discharge of VTTREF. VTTREF is independent of the EN pin state. To meet stability criteria, a capacitor of 0.1 μ F min must be installed close to VTTREF (pin1). Capacitor value at VTTREF (pin 1) must not exceed 2.2 μ F.

8.3.4 EN Control (EN)

When EN is driven high, the TPS7H3301-SP Vo/ VTT regulator begins normal operation. When EN is driven low, Vo/VTT is discharged to GND through an internal 18- Ω MOSFET. VTTREF remains on when EN is driven low. EN is not tied high internally to prevent power sequencing issues with an external signal that may be controlling the enable. EN is floating input and not internally tied, thus the user can have complete control over where and when the EN signal is generated. EN feeds directly into PowerGood (PGOOD). When enable is low Pgood is low.

8.3.5 PowerGood Function (PGOOD)

The TPS7H3301-SP provides an open-drain PGOOD output that goes high when the Vo/VTT output is within 20% of VTTREF (typ). PGOOD deasserts within 1 μ s after the output exceeds the size of the powergood window. During initial Vo/VTT startup, PGOOD asserts high 2 ms (typ) after the Vo/ VTT enters power good window. Because PGOOD is an open-drain output, a 100-k Ω , pullup resistor between PGOOD and a stable active supply voltage rail is required.

8.3.6 VO Current Protection

The LDO has a constant OCL.

8.3.7 VIN UVLO Protection

For VIN/ VDD undervoltage lockout (UVLO) protection, the TPS7H3301-SP monitors VIN/ VDD voltage. When the VIN/ VDD voltage is lower than the UVLO threshold voltage, both the VTT and VTTREF regulators are powered off. This shutdown is a non-latch protection.

8.3.8 Thermal Shutdown

The TPS7H3301-SP monitors its junction temperature. If the device junction temperature exceeds its threshold value, (typically 210°C), the VO/VTT and VTTREF regulators are both shut off, discharged by the internal discharge MOSFETs. This shutdown is a non-latch protection.

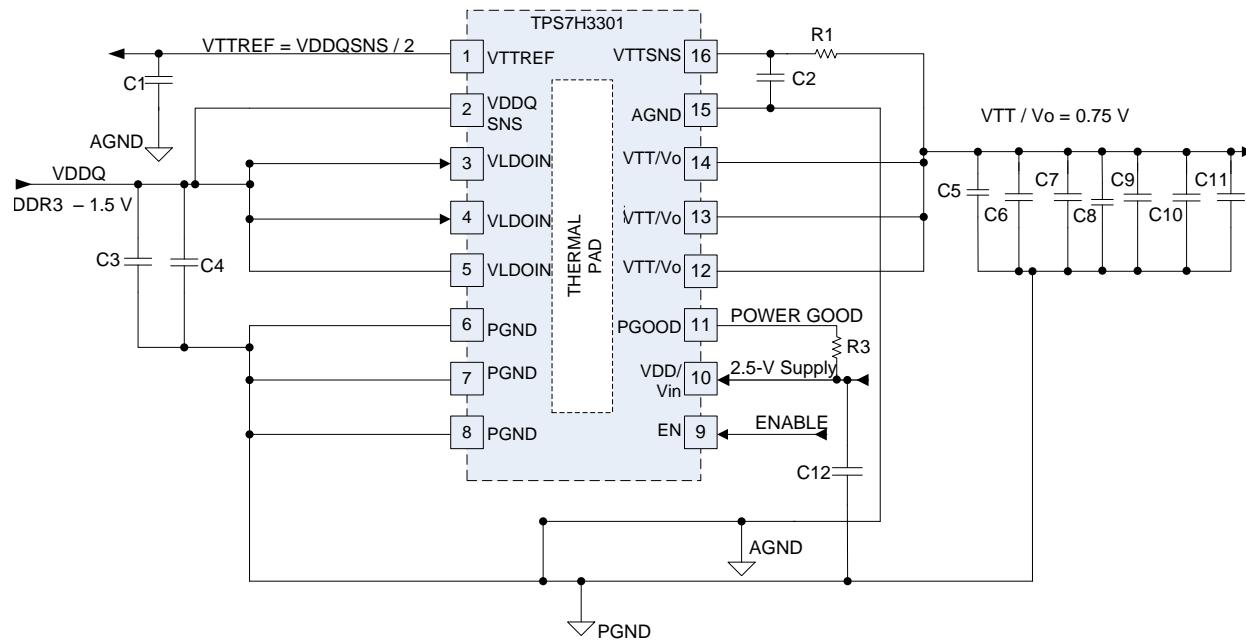
8.4 Device Functional Modes

TPS7H3301-SP a 3-A source-sink LDO provides low output noise to meet system needs. In order to improve efficiency in the LDO, TPS7H3301-SP LDO can operate from low VLDOIN voltage rail, thus using dual voltage source one for the VLDOIN that supports high current and an alternate voltage source that provides voltage for VDDQSNS pin.

Typically VLDOIN and VDDQSNS pins are tied together. In the memory system VDDQ is a high-current supply that powers the core, the I/O, and the logic of the memory, VTTREF is a low-current, precision reference voltage that provides a threshold between a logic high (one) and a logic low (zero) that adapts to changes in the I/O supply voltage. By providing a precision threshold that adapts to the supply voltage, VTTREF realizes wider noise margins than those possible with a fixed threshold and normal variations in termination and drive impedance. Specifications vary from device manufacturer to manufacturer, but the most common specification is 0.49 to 0.51 times VDDQ and draws only tens to hundreds of microamps. For TPS7H3301-SP VTTREF is designed to source / sink 10 mA.

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS7H3301-SP device is a highly-integrated source sink LDO. The device is targeted to support VTT voltage for DDR memory applications and is capable of sourcing and sinking 3-A load current. The TPS7H3301-SP user's guide is available on www.ti.com, [SLVUAK2](#). The guide highlights standard EVM test results, schematic, and bill of materials (BOM) for reference.

9.2 Typical Application

The design example describes a 2.5-V Vin, DDR3 configuration.

Figure 21. Typical Application Circuit

9.2.1 Design Requirements

See the [Recommended Operating Conditions](#) for recommended limits.

Typical Application (continued)

9.2.2 Detailed Design Procedure

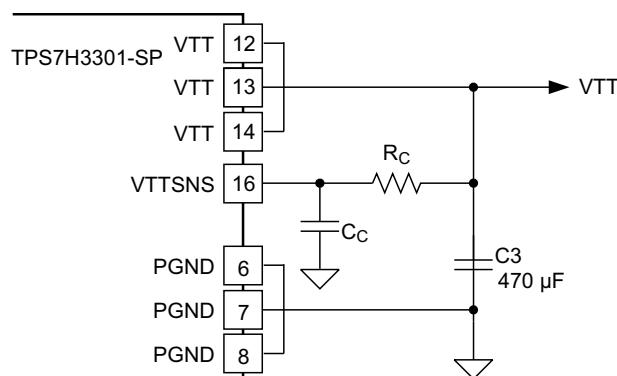
Table 1. Design Example 1 List of Materials

REFERENCE DESIGNATOR	DESCRIPTION	SPECIFICATION	PART NUMBER	MANUFACTURER
R1	Resistor	392 Ω	CRCW0603392RFKEA	
R3		100 kΩ	CRCW0603100KJNEA	
C3, C5, C6, C7	Capacitor	150 µF, 10 V	T530D157M010ATE005	Kemet
C2		1000 pF	GRM188R71H102KA01D	MuRata
C1		0.1 µF	08053C104KAT2A	AVX
C4, C8, C9, C10, C11		4.7 µF, 10 V	1210ZC475KAT2A	Murata
C12		10 µF, 10 V	GRM21BR71A106KE51L	Murata

9.2.2.1 VIN/VDD Capacitor

Add a ceramic capacitor, with a value between 1- and 10- μ F, placed close to the VIN/VDD pin, to stabilize the bias supply (2.5-V rail or 3.3-V rail) from any parasitic impedance from the supply.

9.2.2.2 VLDO Input Capacitor


Depending on the trace impedance between the VLDOIN/ VDDQ bulk power supply to the device, a transient increase of source current is supplied mostly by the charge from the VLDOIN/ VDDQ input capacitor. Use a 150- μ F (or greater) tantalum capacitor in parallel with 4.7uf ceramic capacitor to supply this transient charge. Provide more input capacitance as more output capacitance is used at VO. In general, use one-half of the C_{OUT} value for input. One can also determine the input capacitance based upon headroom between VLDOIN and VTT/ Vo voltage differential in the application.

9.2.2.3 VTT Output Capacitor

For stable operation, the total capacitance of the VTT/ Vo output pin must be greater than 470 μ F. Attach three, 3 x 150- μ F low esr tantalum capacitors in parallel with ceramic capacitors to minimize the effect of equivalent series resistance (ESR) and equivalent series inductance (ESL). If the ESR is greater than 2 m Ω , insert an R-C filter between the output and the VTT/SNS input to achieve loop stability. The R-C filter time constant should be almost the same as or slightly lower than the time constant of the output capacitor and its ESR.

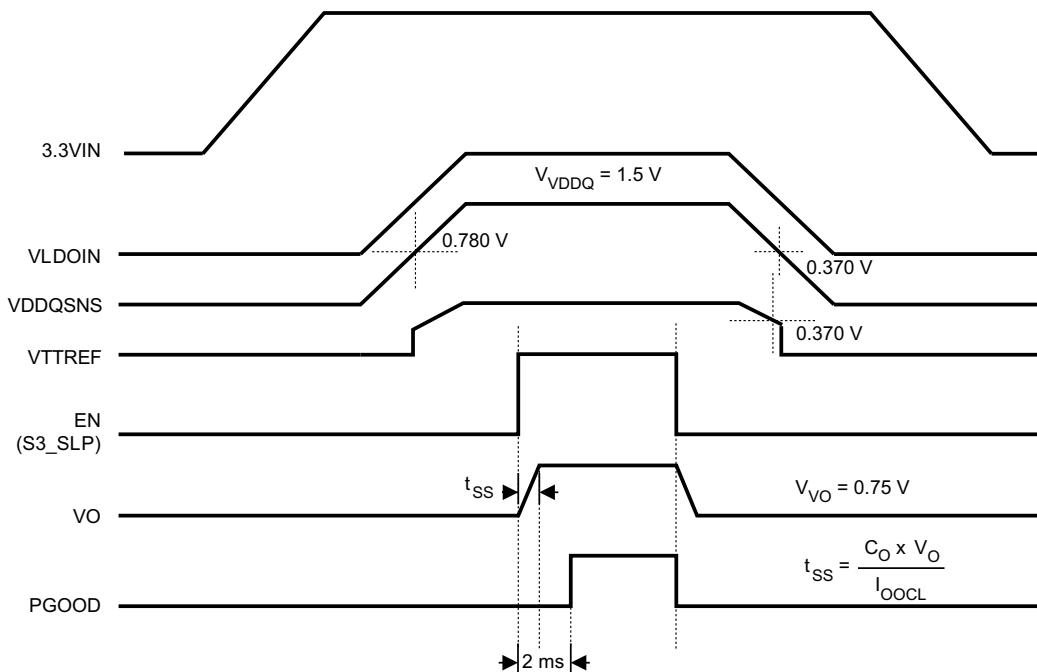
9.2.2.4 VTT SNS Connection

To achieve tight regulation with minimum effect of trace resistance, a remote sensing pin, the VTTSNS pin should be connected to the positive pin of the VTT pin output capacitor or capacitors as a separate trace from the high-current path from VTT. Consider adding a low-pass R-C filter at the VTTSNS pin in case the ESR of the VTT output capacitor or capacitors is larger than $2\text{ m}\Omega$. The R-C filter time constant should be approximately the same or slightly lower than the time constant of the VTT output capacitance and ESR.

Figure 22. R-C Filter for VTTSNs

9.2.2.5 Low VIN Applications

TPS7H3301-SP can be used in an application system where either a 2.5-V rail or a 3.3-V rail is available. The TPS7H3301-SP minimum input voltage requirement is 2.375 V. If a 2.5-V rail is used, ensure that the absolute minimum voltage (both DC and transient) at the device pin is be 2.375 V or greater. The voltage tolerance for a 2.5-V rail input is between –5% and 5% accuracy, or better.


9.2.2.6 S3 and Pseudo-S5 Support

The TPS7H3301-SP provides S3 support by an EN function. The EN pin could be connected to an SLP_S3 signal in the end application. Both VTTREF and Vo/VTT are on when EN = high (S0 state). VTTREF is maintained while Vo/ VTT is turned off and discharged via an internal discharge MOSFET when EN = low (S3 state). When EN = low and the VDDQSNS voltage is less than 0.780 V, TPS7H3301-SP enters pseudo-S5 state. Both VTTREF and VTTREF outputs are turned off and discharged to GND through internal MOSFETs when pseudo-S5 support is engaged (S4/S5 state). [Figure 23](#) shows a typical startup and shutdown timing diagram for an application that uses S3 and pseudo-S5 support.

9.2.2.7 Tracking Startup and Shutdown

The TPS7H3301-SP also supports tracking startup and shutdown when EN is tied directly to the system bus and not used to turn on or turn off the device. During tracking startup, VO/VTT follows VTTREF once VDDQSNS voltage is greater than 0.78 V. VDDQSNS incorporates the resistor divider network. The typical soft-start time for the VDDQ rail is approximately 3 ms, however it may vary depending on the system configuration. The SS time of the VO/VTT output no longer depends on the OCL setting, but it is a function of the SS time of the VDDQ rail. PGOOD is asserted 2 ms after VO/VTT is within $\pm 20\%$ of VTTREF. During tracking shutdown, VO/VTT falls following VTTREF until VTTREF reaches 0.37 V. Once VTTREF falls below 0.37 V, the internal discharge MOSFETs are turned on and quickly discharge both VTTREF and VO/VTT to GND. PGOOD is deasserted once VO/VTT is beyond the $\pm 20\%$ range of VTTREF. [Figure 24](#) shows the typical timing diagram for an application that uses tracking startup and shutdown.

There are no sequencing requirements between Vin/VDD and VLDOIN. If VLDOIN is applied first followed by VDD/Vin there is no issue. Vin UVLO protection monitors Vin/VDD voltage, when Vin/Vdd is lower than UVLO threshold both VTT and VTTREF regulators are powered off.

Figure 23. Typical Timing Diagram for S3 and Pseudo-S5 Support

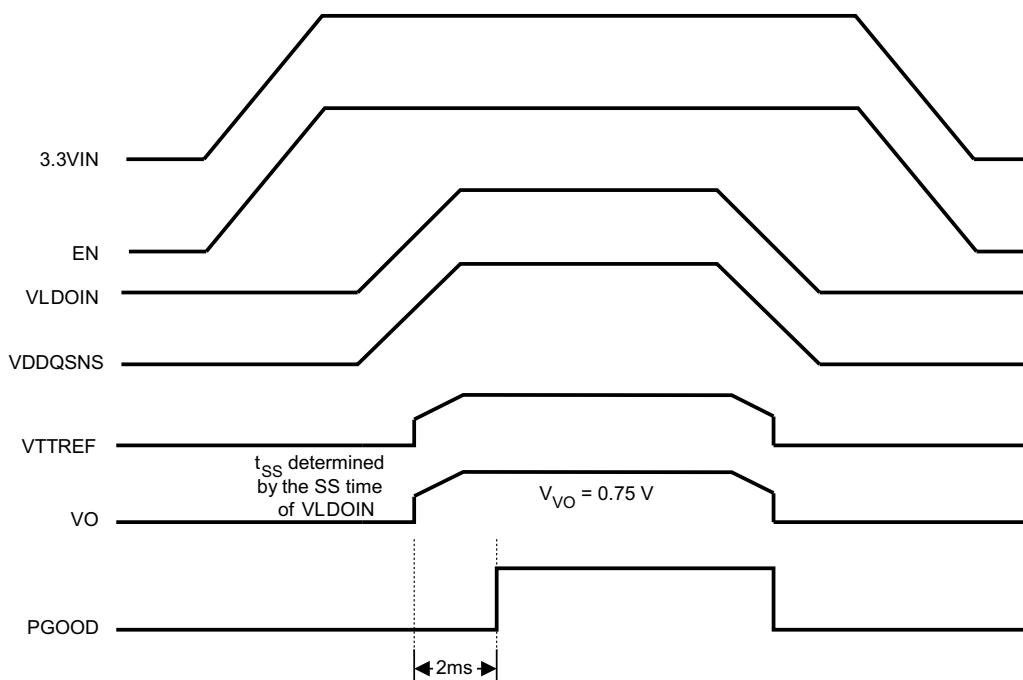


Figure 24. Typical Timing Diagram of Tracking Startup and Shutdown

9.2.2.8 Output Tolerance Consideration for VTT DIMM Applications

The TPS7H3301-SP is specifically designed to power up the memory termination rail (as shown in Figure 25). The DDR memory termination structure determines the main characteristics of the VTT rail, which is to be able to sink and source current while maintaining acceptable VTT tolerance. See Figure 26 for typical characteristics for a single memory cell.

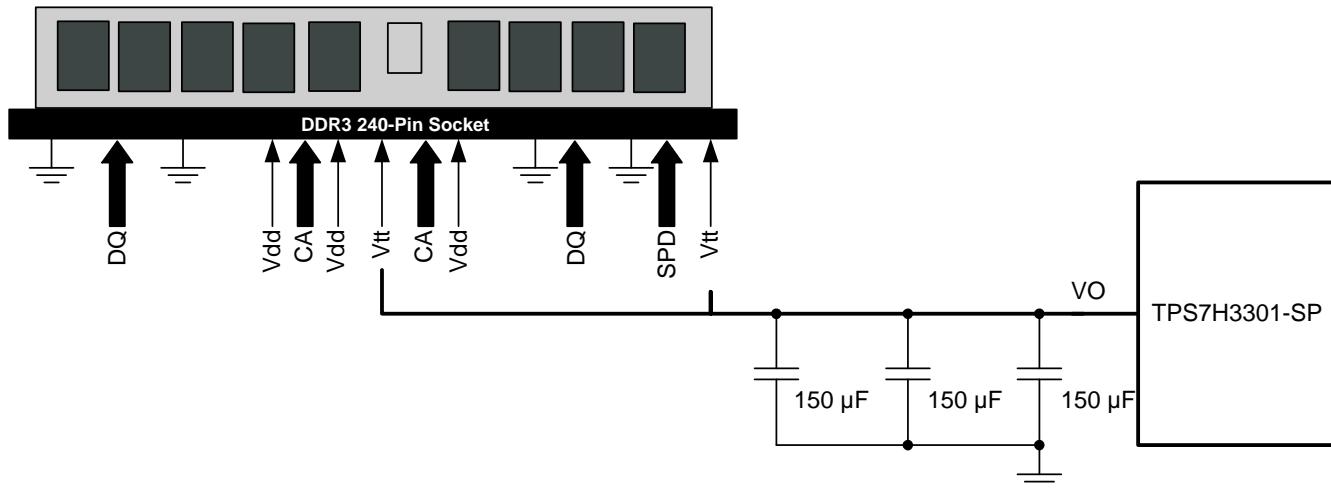
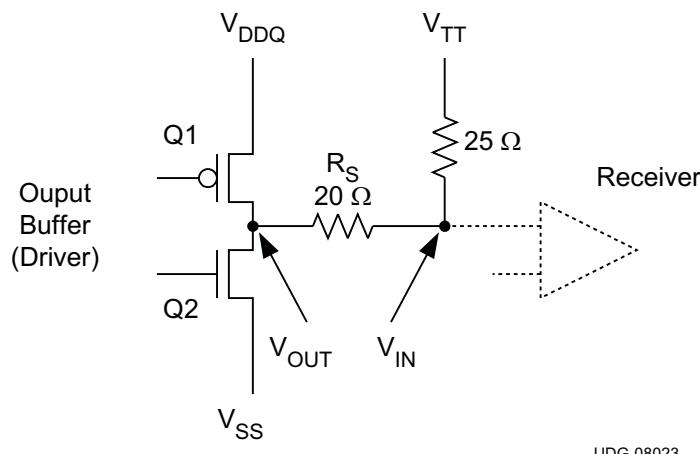



Figure 25. Typical Application Diagram for DDR3 VTT DIMM using TPS7H3301-SP

UDG-08023

Figure 26. DDR Physical Signal System Bidirectional SSTL Signaling

In [Figure 26](#), when Q1 is on and Q2 is off:

- Current flows from VDDQ via the termination resistor to VTT
- VTT sinks current

In [Figure 26](#), when Q2 is on and Q1 is off:

- Current flows from VTT via the termination resistor to GND
- VTT sources current

Because VTT accuracy has a direct impact on the memory signal integrity, it is imperative to understand the tolerance requirement on VTT. Based on JEDEC VTT specifications for DDR and DDR2 (JEDEC standard: DDR JESD8-9B May 2002; DDR2 JESD8-15A Sept 2003).

$$VTTREF - 40 \text{ mV} < VTT < VTTREF + 40 \text{ mV}, \text{ for both dc and ac conditions}$$

The specification itself indicates that VTT must keep track of VTTREF for proper signal conditioning.

The TPS7H3301-SP ensures the regulator output voltage to be:

$$VTTREF - 34 \text{ mV} < VTT < VTTREF + 34 \text{ mV}, \text{ for both DC and AC conditions and } -3 \text{ A} < I_{VTT} < 3 \text{ A}$$

The regulator output voltage is measured at the regulator side, not the load side. The tolerance is applicable to DDR, DDR2, DDR3 and Low Power DDR3/DDR4 applications (see [Table 2](#) for detailed information). To meet the stability requirement, a minimum output capacitance of 470 μF is needed, combination of both Tantalum and ceramic capacitors. Considering the actual tolerance on the MLCC capacitors, four or higher 4.7- μF ceramic capacitors in parallel with $3 \times 150 \mu\text{F}$ low esr tantalum capacitor are sufficient to meet the above requirement. For higher esr tantalum capacitors it will require multiple tantalum capacitors in parallel with ceramic capacitors to meet system needs.

Table 2. DDR, DDR2, DDR3, and LP DDR3 Termination Technology and Their Differences

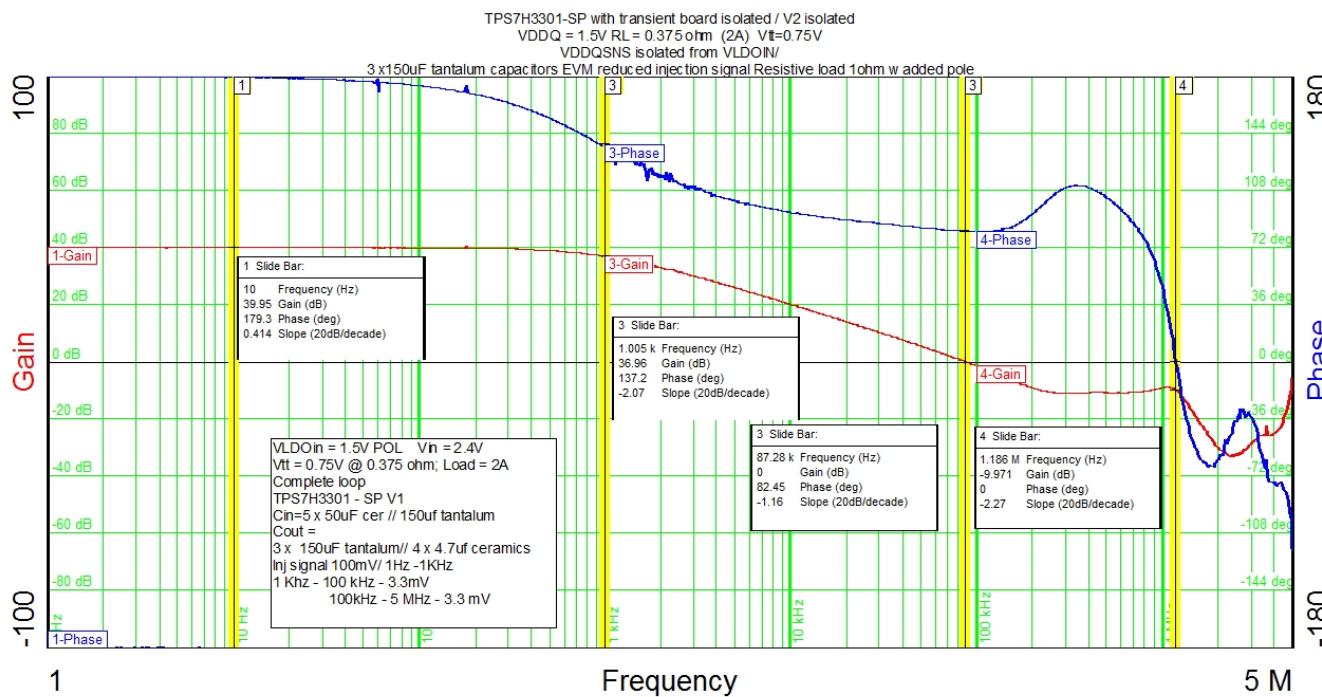
	DDR	DDR2	DDR3	LOW POWER DDR3 (DDR3L)
FSB Data Rates	200, 266, 333 and 400 MHz	400, 533, 677 and 800 MHz	800, 1066, 1330 and 1600 MHz	Same as DDR3
Termination	Motherboard termination to VTT for all signals	On-die termination for data group. VTT termination for address, command and control signals	On-die termination for data group. VTT termination for address, command and control signals	Same as DDR3
Termination Current Demand	Max source/sink transient currents of up to 2.6 A to 2.9 A	Not as demanding • Only 34 signals (address, command, control) tied to VTT • ODT handles data signals Less than 1 A of burst current	Not as demanding • Only 34 signals (address, command, control) tied to VTT • ODT handles data signals Less than 1 A of burst current	Same as DDR3
Voltage Level	2.5-V Core and I/O 1.25-V VTT	1.8-V Core and I/O 0.9-V VTT	1.5-V Core and I/O 0.75-V VTT	1.35-V Core and I/O 0.68-V VTT

The TPS7H3301-SP is designed as a Gm driven LDO. The voltage droop between the reference input and the output regulator is determined by the transconductance and output current of the device. The typical Gm is 250 S at 3 A and changes with respect to the load in order to conserve the quiescent current (that is, the Gm is very low at no load condition). The Gm LDO regulator is a single pole system. Its unity gain bandwidth for the voltage loop is only determined by the output capacitance, as a result of the bandwidth nature of the Gm (see [Equation 1](#)).

$$F_{UGBW} = \frac{Gm}{2 \times \pi \times C_{OUT}}$$

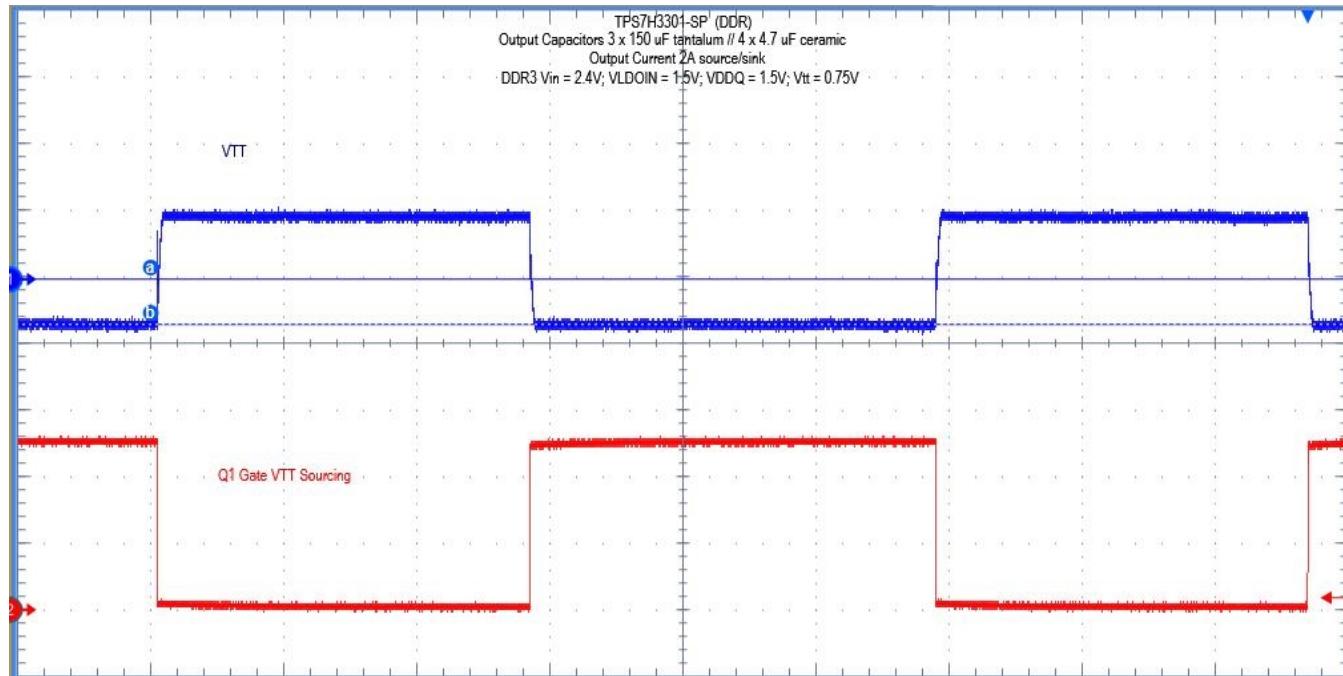
where

- F_{UGBW} is the unity gain bandwidth
- Gm is transconductance
- C_{OUT} is the output capacitance


(1)

There are two limitations to this type of regulator when it comes to the output bulk capacitor requirement. To maintain stability, the zero location contributed by the ESR of the output capacitors should be greater than the -3 -dB point of the current loop. This constraint means that higher ESR capacitors should not be used in the design. In addition, the impedance characteristics of the ceramic capacitor should be well understood in order to prevent the gain peaking effect around the Gm -3 -dB point because of the large ESL, the output capacitor and parasitic inductance of the VO trace.

[Figure 27](#) shows the bode plot simulation for a typical DDR3 configuration of the TPS7H3301-SP, where:


- $V_{IN} = 2.4$ V
- $V_{VLDOIN} = 1.5$ V
- $V_{VO} = 0.75$ V
- $I_{IO} = 2$ A
- $3 \times 150\text{-}\mu\text{F}$ low-ESR tantalum capacitors (T530D157M010ATE005) in parallel with $4 \times 4.7\text{-}\mu\text{F}$ ceramic capacitor include
- ESR = 1.66 m Ω
- ESL = 800 pH

The unity-gain bandwidth is approximately 87.3 kHz and the phase margin is 82° . The 0-dB level is crossed, the gain peaks because of the ESL effect. However, the peaking is kept well below 0 dB.

Figure 27. Bode Plot for a Typical DDR3 Configuration

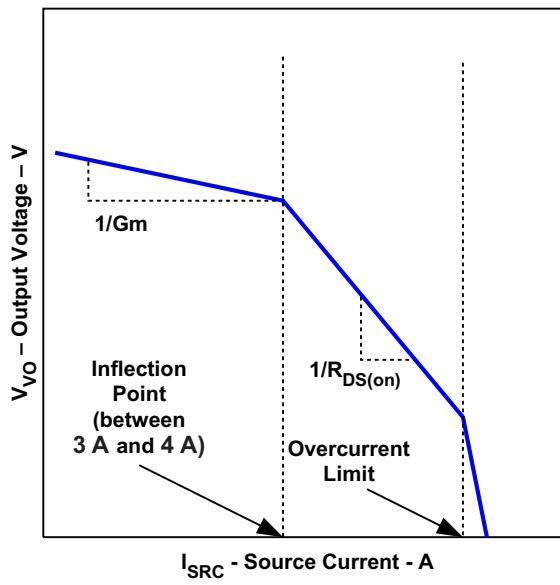
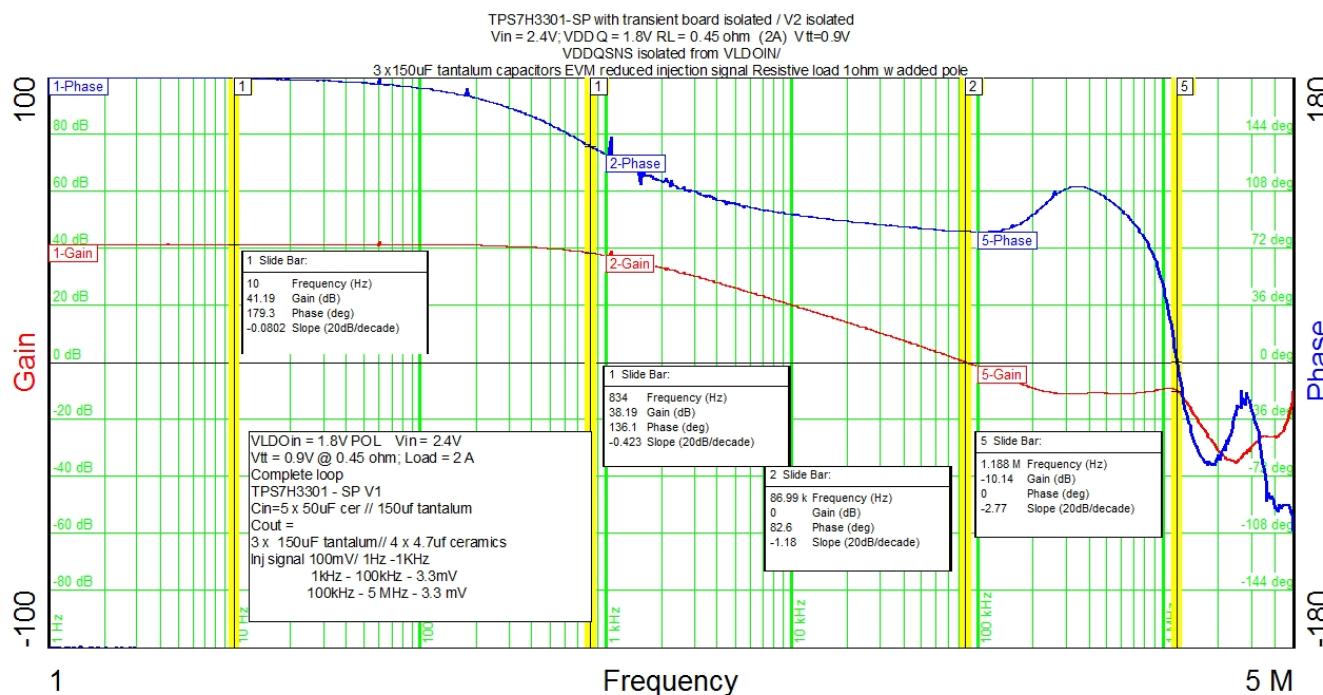

Figure 8 shows the load regulation and Figure 28 shows the transient response for a typical DDR3 configuration. When the regulator is subjected to ± 1.5 -A load step and release, the output voltage measurement shows no difference between the DC and AC conditions.

Figure 28. Transient Plot

9.2.2.9 LDO Design Guidelines


The minimum input ($VLDOIN$) to output voltage (V_O/V_{th}) difference (headroom) decides the lowest usable supply voltage Gm -driven to drive a certain load. For TPS7H3301-SP, a minimum of 300 mV ($VLDOIN_{MIN} - VO_{MAX}$) is needed in order to support a Gm driven sourcing current of 3 A based on a design of $V_{IN} = 3.3$ V and $C_{OUT} = 470 \mu F$. Because the TPS7H3301-SP is essentially a Gm driven LDO, its impedance characteristics are both a function of the $1/Gm$ and $R_{DS(on)}$ of the sourcing MOSFET (see Figure 29). The current inflection point of the design is between 3 A and 4 A. When I_{SRC} is less than the inflection point, the LDO is considered to be operating in the Gm region; when I_{SRC} is greater than the inflection point but less than the overcurrent limit point, the LDO is operating in the $R_{DS(on)}$ region. The typical sourcing $R_{DS(on)}$ is 154 mΩ with $V_{IN} = 3.0$ V and $T_J = 125^\circ C$.

UDG-08026

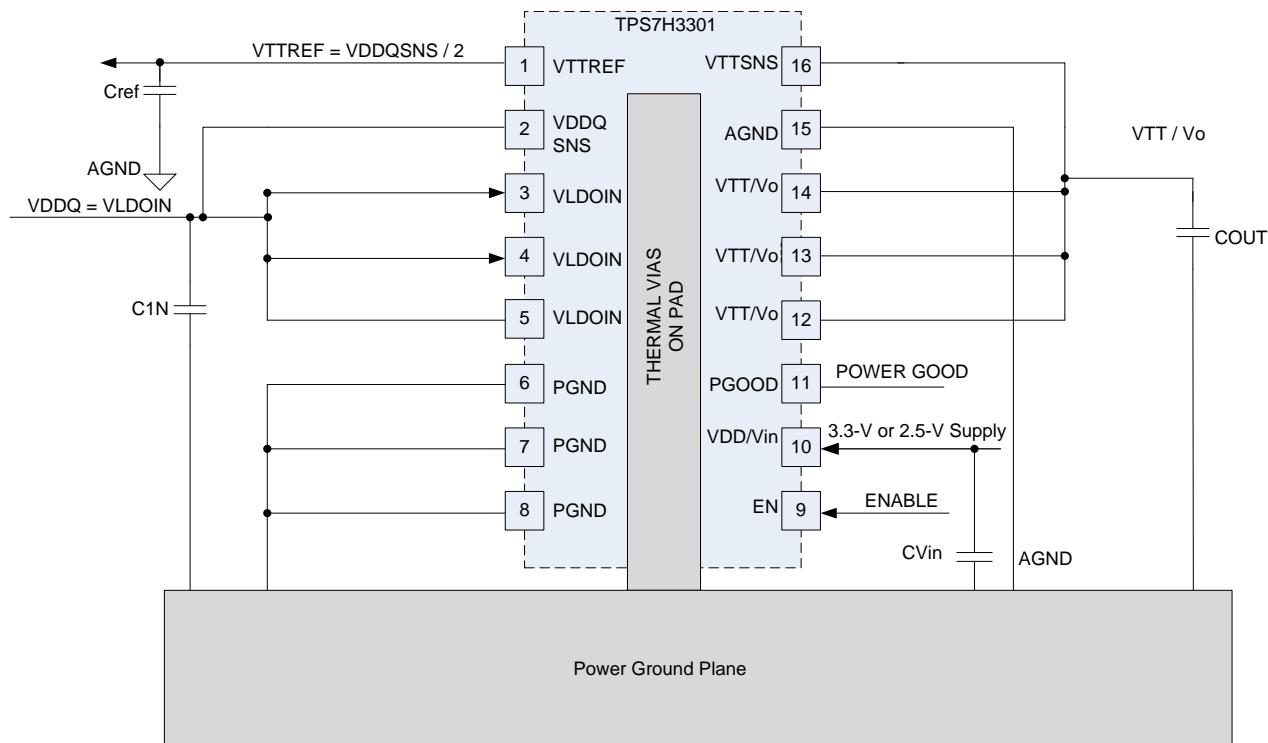
Figure 29. TPS7H3301-SP Impedance Characteristics

9.2.3 Application Curve

Figure 30. DDR2 2-A Load Vin 2.4 V 0.9 Vtt

10 Power Supply Recommendations

TPS7H3301-SP is designed to support DDR, DDR2, DDR3, DDR3L, and DDR4 VTT applications. TPS7H3301-SP VLDOIN supports voltage range from 0.9 V to 3.5 V. The supply must be well regulated. Having a separate VLDOIN and VDDQSNS allows designer to optimize system efficiency. Vin/VDD is used to bias the TPS7H3301-SP IC and its voltage range is from 2.375 V to 3.5 V. This supply must be well regulated and bypassed with a ceramic capacitor with a value of 1 μ F and 10 μ F. TI recommends that VLDOIN and VDDQSNS be isolated from each other. If this is not possible then an RC filter must be used to isolated VLDOIN and VDDQNNS. However, in so doing the dynamic tracking of VTT and VTTREF will be lost. See the user's guide [SLVUAK2](#) for additional details.


11 Layout

11.1 Layout Guidelines

Consider the following points before starting the TPS7H3301-SP layout design.

- The input bypass capacitor for VLDOIN should be placed as close as possible to the pin with short and wide connections.
- The output capacitor for VO/VTT should be placed close to the pin with short and wide connection in order to avoid additional ESR and/or ESL trace inductance.
- VOSNS should be connected to the positive node of VO/VTT output capacitors as a separate trace from the high current power line. This configuration is strongly recommended to avoid additional ESR and/or ESL. If sensing the voltage at the point of the load is required, it is recommended to attach the output capacitor or capacitors at that point. Also, it is recommended to minimize any additional ESR and/or ESL of ground trace between the GND pin and the output capacitor or capacitors.
- Consider adding low-pass filter at VOSNS if the ESR of the VO/VTT output capacitor or capacitors is larger than $2\text{ m}\Omega$.
- VDDQSNS can be connected separately from VLDOIN. Remember that this sensing potential is the reference voltage of VTTREF. Avoid any noise-generating lines.
- The negative node of the VO/VTT output capacitor or capacitors and the VTTREF capacitor should be tied together by avoiding common impedance to the high current path of the VO/VTT source/sink current.
- The GND and PGND pins should be connected to the thermal land underneath the die pad with multiple vias connecting to the internal system ground planes (for better result, use at least two internal ground planes). Use as many vias as possible to reduce the impedance between PGND/GND and the system ground plane. Also, place bulk caps close to the DIMM load point, route the VOSNS to the DIMM load sense point.
- In order to effectively remove heat from the package, properly prepare the thermal land. Apply solder directly to the package's thermal pad. The wide traces of the component and the side copper connected to the thermal land pad help to dissipate heat. Numerous vias 0.33 mm in diameter connected from the thermal land to the internal/solder side ground plane or planes should also be used to help dissipation.

11.2 Layout Example

Figure 31. Layout Recommendation

11.3 Thermal Considerations

Because the TPS7H3301-SP is a linear regulator, the VO current flows in both source and sink directions, thereby dissipating power from the device. When the device is sourcing current, the voltage difference between VLDOIN and VO times IO (I_{IO}) current becomes the power dissipation as shown in [Equation 2](#).

$$P_{DISS_SRC} = (V_{VLDOIN} - V_{VO}) \times I_{O_SRC} \quad (2)$$

In this case, if VLDOIN is connected to an alternative power supply lower than the VDDQ voltage, overall power loss can be reduced. For the sink phase, VO voltage is applied across the internal LDO regulator, and the power dissipation, P_{DISS_SNK} can be calculated by [Equation 3](#).

$$P_{DISS_SNK} = V_{VO} \times I_{O_SNK} \quad (3)$$

Because the device does not sink and source current at the same time and the IO current may vary rapidly with time, the actual power dissipation should be the time average of the above dissipations over the thermal relaxation duration of the system. Another source of power consumption is the current used for the internal current control circuitry from the VIN supply and the VLDOIN supply. This can be estimated as 5 mW or less during normal operating conditions. This power must be effectively dissipated from the package.

The thermal performance of an LDO depends on the printed circuit board (PCB) layout. Because the TPS7H3301-SP device is shipped unformed, only the recommended heat pad pattern is shown. Lead pad placement depends on final form factor.

To further improve the thermal performance of this device, using a larger than recommended thermal land as well as increasing the number of vias helps lower the thermal resistance from junction to heat slug. TI recommends that up to 48 (0.01 inch) thermal vias can be located under the device package.

12 器件和文档支持

12.1 器件支持

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时, 应将导线一起截短或将装置放置于导电泡棉中, 以防止 MOS 门极遭受静电损伤。

12.5 Glossary

SLYZ022 — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本, 请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 **JESD46** 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 **JESD48** 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的**TI** 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 **TI** 半导体产品销售条件与条款的适用规范。仅在 **TI** 保证的范围内, 且 **TI** 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定, 否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 **TI** 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险, 客户应提供充分的设计与操作安全措施。

TI 不对任何 **TI** 专利权、版权、屏蔽作品权或其它与使用了 **TI** 组件或服务的组合设备、机器或流程相关的 **TI** 知识产权中授予的直接或隐含权限作出任何保证或解释。**TI** 所发布的与第三方产品或服务有关的信息, 不能构成从 **TI** 获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可, 或是 **TI** 的专利权或其它知识产权方面的许可。

对于 **TI** 的产品手册或数据表中 **TI** 信息的重要部分, 仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。**TI** 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 **TI** 组件或服务时, 如果对该组件或服务参数的陈述与 **TI** 标明的参数相比存在差异或虚假成分, 则会失去相关 **TI** 组件或服务的所有明示或暗示授权, 且这是不正当的、欺诈性商业行为。**TI** 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意, 尽管任何应用相关信息或支持仍可能由 **TI** 提供, 但他们将独自负责满足与其产品及在其应用中使用 **TI** 产品相关的所有法律、法规和安全相关要求。客户声明并同意, 他们具备制定与实施安全措施所需的全部专业技术知识, 可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类安全关键应用中使用任何 **TI** 组件而对 **TI** 及其代理造成任何损失。

在某些场合中, 为了推进安全相关应用有可能对 **TI** 组件进行特别的促销。**TI** 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此, 此类组件仍然服从这些条款。

TI 组件未获得用于 **FDA Class III** (或类似的生命攸关医疗设备) 的授权许可, 除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 **TI** 特别注明属于军用等级或“增强型塑料”的 **TI** 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同意, 对并非指定面向军事或航空航天用途的 **TI** 组件进行军事或航空航天方面的应用, 其风险由客户单独承担, 并且由客户独自负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 **ISO/TS16949** 要求的产品, 这些产品主要用于汽车。在任何情况下, 因使用非指定产品而无法达到 **ISO/TS16949** 要求, **TI** 不承担任何责任。

产品	应用
数字音频	www.ti.com.cn/audio
放大器和线性器件	www.ti.com.cn/amplifiers
数据转换器	www.ti.com.cn/dataconverters
DLP® 产品	www.dlp.com
DSP - 数字信号处理器	www.ti.com.cn/dsp
时钟和计时器	www.ti.com.cn/clockandtimers
接口	www.ti.com.cn/interface
逻辑	www.ti.com.cn/logic
电源管理	www.ti.com.cn/power
微控制器 (MCU)	www.ti.com.cn/microcontrollers
RFID 系统	www.ti.com.cn/rfidsys
OMAP应用处理器	www.ti.com/omap
无线连通性	www.ti.com.cn/wirelessconnectivity
	德州仪器在线技术支持社区 www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568号, 中建大厦32楼邮政编码: 200122
Copyright © 2016, 德州仪器半导体技术(上海)有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-1422801VXC	ACTIVE	CFP	HKR	16	1	TBD	NIAU	N / A for Pkg Type	-55 to 125	5962-1422801VXC TPS7H3301-SP	Samples
5962R1422801VXC	ACTIVE	CFP	HKR	16	1	TBD	NIAU	N / A for Pkg Type	-55 to 125	5962R1422801VXC TPS7H3301-RHA	Samples
TPS7H3301HKR/EM	ACTIVE	CFP	HKR	16	1	TBD	NIAU	N / A for Pkg Type	25 only	TPS7H3301HKREM	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

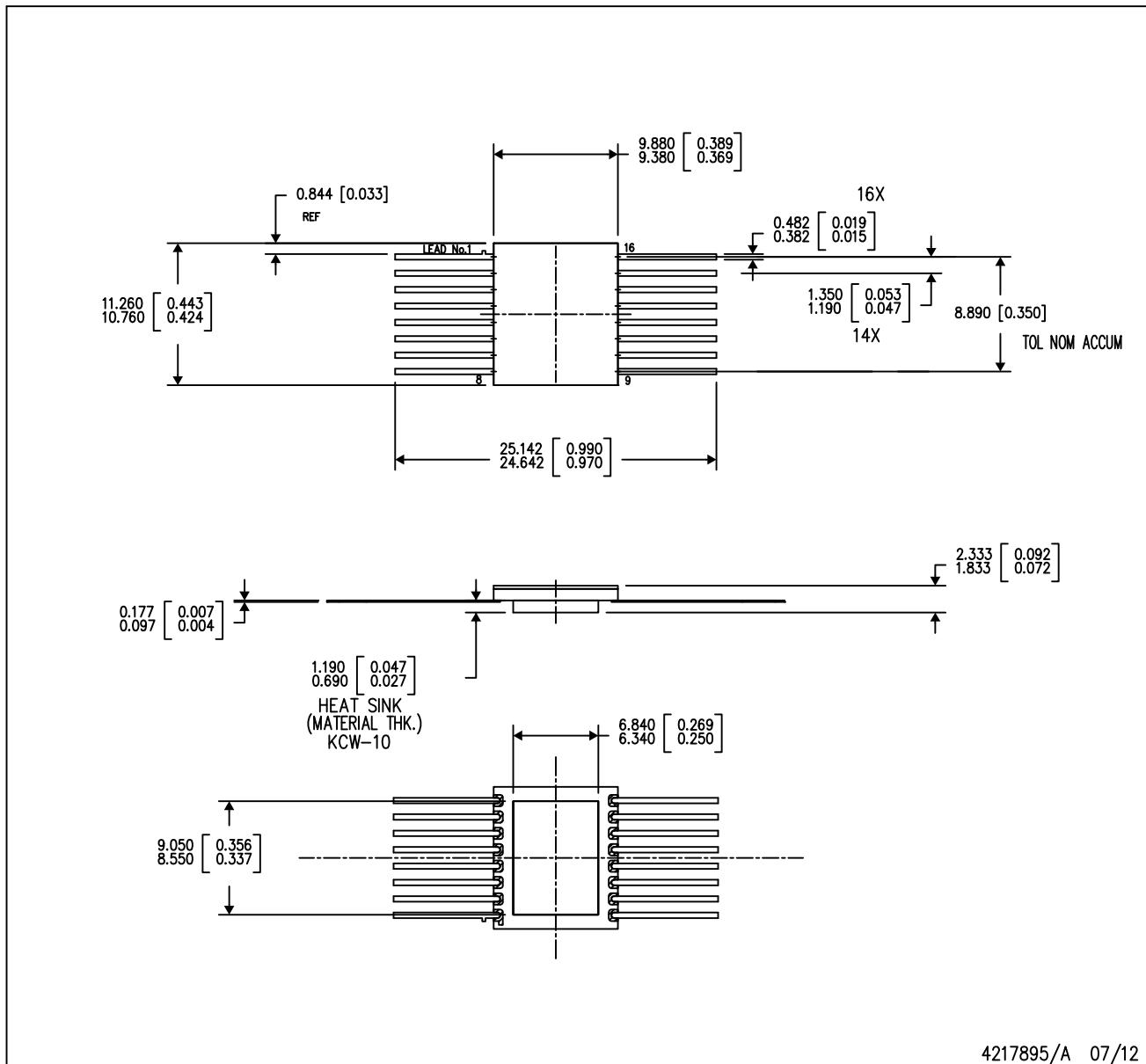
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

www.ti.com

PACKAGE OPTION ADDENDUM

25-Apr-2017


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

HKR (R-CDFP-F16)

CERAMIC DUAL FLATPACK

NOTES:

- A. All linear dimensions are in millimeters (inches).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a metal lid. Lid and heat slug are connected to pin 8 (Gnd).
- D. The terminals will be gold plated.

重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改，并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息，并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (<http://www.ti.com/sc/docs/stdterms.htm>) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时，不得变更该等信息，且必须随附所有相关保证、条件、限制和通知，否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时，如果存在对产品或服务参数的虚假陈述，则会失去相关 TI 产品或服务的明示或暗示保证，且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员（总称“设计人员”）理解并同意，设计人员在设计应用时应自行实施独立的分析、评价和判断，且应全权负责并确保应用的安全性，及设计人员的应用（包括应用中使用的所有 TI 产品）应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明，其具备制订和实施下列保障措施所需的一切必要专业知识，能够 (1) 预见故障的危险后果，(2) 监视故障及其后果，以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意，在使用或分发包含 TI 产品的任何应用前，将彻底测试该等应用和该等应用中所用 TI 产品的功能。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息，包括但不限于与评估模块有关的参考设计和材料（总称“TI 资源”），旨在帮助设计人员开发整合了 TI 产品的应用，如果设计人员（个人，或如果是代表公司，则为设计人员的公司）以任何方式下载、访问或使用任何特定的 TI 资源，即表示其同意仅为该等目标，按照本通知的条款使用任何特定 TI 资源。

TI 所提供的 TI 资源，并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明；也未导致 TI 承担任何额外的义务或责任。TI 有权对 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外，TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的应用时，才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何 TI 知识产权的任何其他明示或默示的许可，也未授予您 TI 或第三方的任何技术或知识产权的许可，该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用 TI 产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述，包括但不限于对准确性或完整性、产权保证、无屡发故障保证，以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任任何申索，包括但不限于因组合产品所致或与之有关的申索，也不为或对设计人员进行辩护或赔偿，即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿，不管 TI 是否获悉可能会产生上述损害赔偿，TI概不负责。

除 TI 已明确指出特定产品已达到特定行业标准（例如 ISO/TS 16949 和 ISO 26262）的要求外，TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准，则该等产品旨在帮助客户设计和创作自己的符合相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会配有任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和标准。设计人员不可将任何 TI 产品用于关乎性命的医疗设备，除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备（例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备）。此类设备包括但不限于，美国食品药品监督管理局认定为 III 类设备的设备，以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格（例如 Q100、军用级或增强型产品）。设计人员同意，其具备一切必要专业知识，可以为自己的应用选择适合的产品，并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2017 德州仪器半导体技术（上海）有限公司