

LMZ34202 4.5V 至 42V 输入、2A SIMPLE SWITCHER 电源模块

1 特性

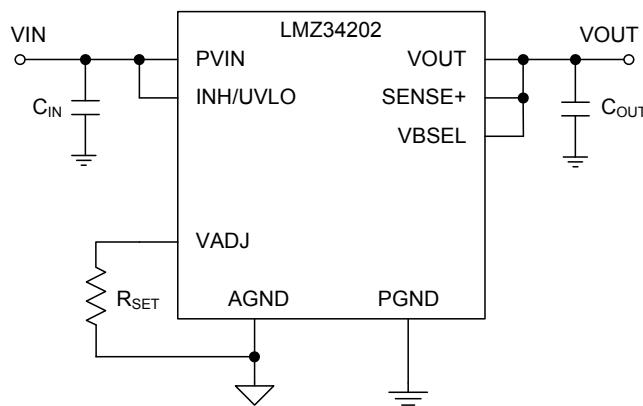
- 完整的集成式电源解决方案可实现小尺寸的薄型设计
- 10mm × 10mm × 4.3mm 封装
- 宽输出电压调节范围 (2.5V 至 7.5V)
- 可调节开关频率 (200kHz 至 1MHz)
- 与外部时钟同步
- 针对轻负载时效率的自动脉冲频率调制 (PFM) 模式
- 可调软启动时间
- 输出电压排序/跟踪
- 电源正常输出
- 可编程欠压锁定 (UVLO)
- 过热热关断保护
- 过流保护 (断续模式)
- 预偏置输出启动
- 工作温度范围: -40°C 至 105°C
- 增强的热性能; 14°C/W
- 符合 EN55022 B 类辐射标准
 - 集成屏蔽式电感

2 应用

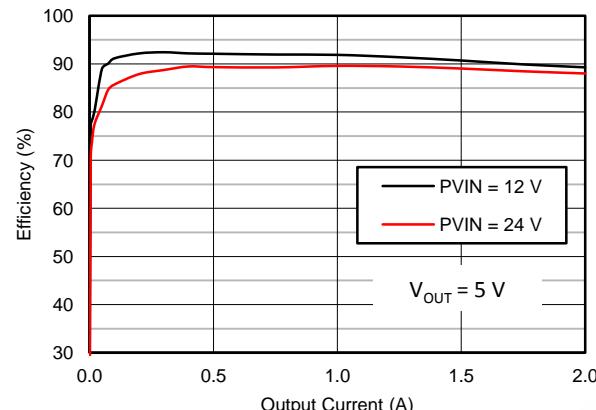
- 工业和电机控制
- 自动测试设备
- 医疗和成像设备
- 高密度电源系统

3 说明

LMZ34202 SIMPLE SWITCHER[®]电源模块是一款易于使用的集成式电源，该模块由一个带屏蔽式电感的 2A DC-DC 转换器和无源元件组成，并且采用薄型 QFN 封装。这套整体电源解决方案允许最低只需采用三个外部组件，同时仍能够调整关键参数以满足特定的设计要求。


QFN 封装易于焊接到印刷电路板上，允许回流焊曲线最高达 260°C，并且具有出色的功耗特性。LMZ34202 极具灵活性且功能丰富，非常适合为各类器件和系统供电。

器件信息(1)


器件型号	封装	封装尺寸
LMZ34202	QFN (43)	10.0mm x 10.0mm

(1) 要了解所有可用封装，请参见数据表末尾的可订购产品附录。

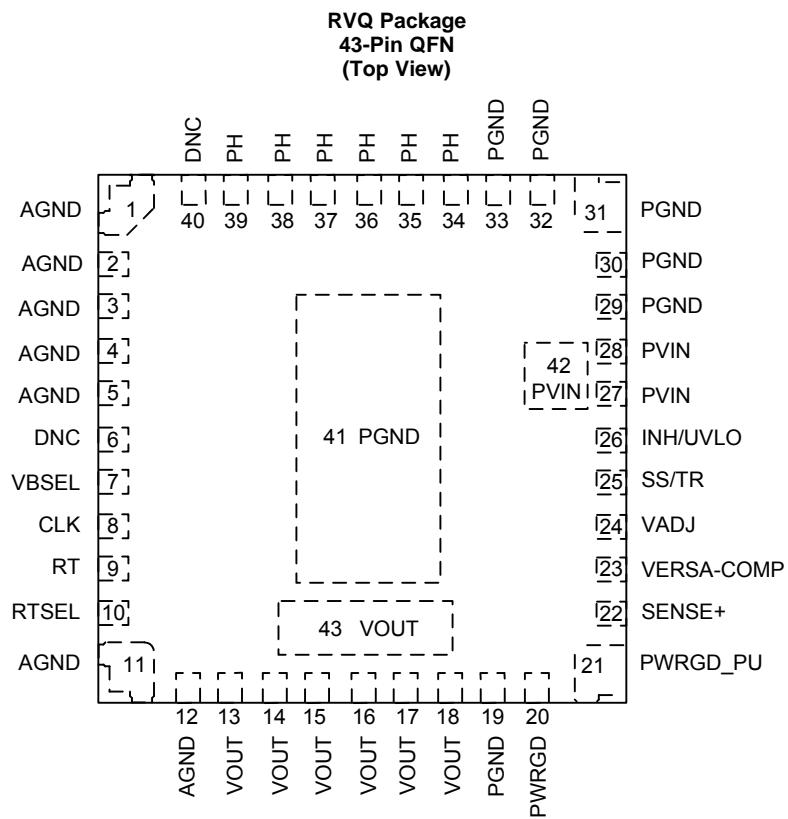
简化应用

效率与输出电流间的关系

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

English Data Sheet: [SNVSAJ2](#)

目录


1	特性	1	7.3	Feature Description	13
2	应用	1	7.4	Device Functional Modes	20
3	说明	1	8	Applications and Implementation	21
4	修订历史记录	2	8.1	Application Information	21
5	Pin Configuration and Functions	3	9	Power Supply Recommendations	24
6	Specifications	5	10	Layout	25
6.1	Absolute Maximum Ratings	5	10.1	Layout Guidelines	25
6.2	ESD Ratings	5	10.2	Layout Example	25
6.3	Recommended Operating Conditions	5	10.3	EMI	26
6.4	Thermal Information	5	11	器件和文档支持	27
6.5	Electrical Characteristics	6	11.1	器件支持	27
6.6	Switching Characteristics	7	11.2	社区资源	27
6.7	Typical Characteristics	8	11.3	商标	27
6.8	Typical Characteristics (Thermal Derating)	11	11.4	静电放电警告	27
7	Detailed Description	12	11.5	Glossary	27
7.1	Overview	12	12	机械、封装和可订购信息	27
7.2	Functional Block Diagram	12			

4 修订历史记录

日期	修订版本	注释
2016 年 3 月	*	首次发布。

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		
AGND	1, 2, 3, 4, 5, 11, 12	G	Zero volt reference for the analog control circuitry. All of these pins are not connected together internal to the device and must be connected to one another externally using an analog ground plane on the PCB. Pins 11 and 12 are internally connected to the PGND of the device at a single point. The analog ground plane of the PCB should allow only analog ground currents to flow through these pins.
CLK	8	I	Synchronization input to synchronize the device to an external clock. Connect this pin to AGND if not used.
DNC	6, 40	-	Do Not Connect. Do not connect these pins to AGND, to another DNC pin, or to any other voltage. These pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.
INH/UVLO	26	I	Inhibit and UVLO adjust pin. Use an open drain or open collector device to control the inhibit function. A resistor divider between this pin, AGND, and PVIN adjusts the UVLO voltage. Connect this pin to PVIN if not used.
PGND	19, 29, 30, 31, 32, 33, 41	G	This is the return current path for the power stage of the device. Connect these pins to the input source, the load, and to the bypass capacitors associated with PVIN and VOUT using power ground planes on the PCB. Pad 41 should be connected to the ground planes using multiple vias for good thermal performance.
PH	34, 35, 36, 37, 38, 39	O	Phase switch node. Do not place any external components on these pins or tie them to a pin of another function.
PVIN	27, 28, 42	I	Power input voltage. These pins supply all of the power to the device. Connect these pins to the input source and connect external bypass capacitors between these pins and PGND close to the device.
PWRGD	20	O	Power Good flag pin. This open drain output asserts low if the output voltage is more than approximately $\pm 10\%$ out of regulation. This pin is internally connected to an uncommitted 100k pull-up resistor that can be pulled up to a user-defined voltage applied to the PWRGD_PU pin.

(1) G = Ground, I = Input, O = Output

Pin Functions (continued)

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		
PWRGD_PU	21	I	An internal 100 k pull-up resistor is connected between this pin and the PWRGD pin. If use of this internal pull-up resistor is desired, connect this pin to an appropriate voltage source that is less than or equal to 12 V. If unused, leave this pin floating.
RT	9	I	This pin is connected to internal frequency setting circuitry which sets the default switching frequency to 500 kHz. An external resistor can be connected from this pin to AGND to adjust the switching frequency. Refer to application section in datasheet.
RTSEL	10	I	This pin can be used to adjust the switching frequency to 1 MHz without the need for an external resistor. Connect this pin to AGND to adjust the frequency to 1 MHz. Otherwise, leave this pin floating.
SENSE+	22	I	Remote sense connection. This pin must be connected to VOUT at the load or at the device pins. Connect the pin to VOUT at the load for improved regulation.
SS/TR	25	I	soft-start and tracking pin. Connecting an external capacitor to this pin adjusts the output voltage soft-start ramp above its 4.1 ms default setting. A voltage applied to this pin allows for tracking and sequencing control.
VADJ	24	I	Connecting a resistor between this pin and AGND adjusts the output voltage.
VBSEL	7	I	Selectable internal bias supply. For output voltages \geq 4.5 V, connect this pin to VOUT. For output voltages $<$ 4.5 V, connect this pin to AGND.
VERSA-COMP	23	I	Connects to internal compensation network. This pin can be left floating or connected to the VADJ pin to select the proper compensation depending on the output voltage.
VOUT	13, 14, 15, 16, 17, 18, 43	O	Output voltage. These pins are connected to the internal output inductor. Connect these pins to the output load and connect external bypass capacitors between these pins and PGND close to the device.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Input voltage	PVIN, INH/UVLO	-0.3	50	V
	VOUT, SENSE+, VBSEL	-0.3	30 ⁽²⁾	V
	VADJ, VERSA-COMP, RT, RTSEL, SS/TR	-0.3	3.6	V
	PWRGD, PWRGD_PU	-0.3	15	V
	CLK	-0.3	5.5	V
Output voltage	PH	-0.3	50	V
Operating junction temperature ⁽³⁾		-40	125	°C
Mechanical shock	Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted		1500	G
Mechanical vibration	Mil-STD-883D, Method 2007.2, 20-2000Hz		20	G
Storage temperature, T_{stg}		-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The maximum voltage that can be applied to these pins is 30 V or PVIN, whichever is less.

(3) See temperature derating curves in the Typical Characteristics section for thermal information.

6.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
P _{VIN}	Input voltage	4.5		42	V
V _{OUT}	Output voltage	2.5		7.5	V
f _{SW}	Switching frequency	300		1000	kHz
T _A	Operating ambient temperature	-40		105	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾	LMZ34202	UNIT
	RVQ (QFN)	
	43 PINS	
R _{θJA}	14	°C/W
Ψ _{JT}	2.6	°C/W
Ψ _{JB}	9	°C/W

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

6.5 Electrical Characteristics

Over -40°C to $+105^{\circ}\text{C}$ free-air temperature, $\text{PV}_{\text{IN}} = 24 \text{ V}$, $\text{V}_{\text{OUT}} = 5 \text{ V}$, $\text{I}_{\text{OUT}} = \text{I}_{\text{OUT}} \text{ max}$, $f_{\text{sw}} = 500 \text{ kHz}$, $\text{C}_{\text{IN}1} = 1 \times 10\text{-}\mu\text{F}$, 100-V 1210 ceramic, $\text{C}_{\text{IN}2} = 1 \times 100\text{-}\mu\text{F}$ 100-V electrolytic bulk, and $\text{C}_{\text{OUT}} = 3 \times 47\text{-}\mu\text{F}$, 16-V 1210 ceramic (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT VOLTAGE (PV_{IN})						
PV_{IN}	Input voltage range	Over I_{OUT} range	4.5 ⁽¹⁾	42	42	V
UVLO	PV_{IN} undervoltage lockout	PV_{IN} increasing		3.2	3.8	V
		PV_{IN} decreasing		2.8		V
OUTPUT VOLTAGE						
V_{OUT} (ADJ)	Output voltage adjust range	Over I_{OUT} range	2.5	7.5	7.5	V
V_{OUT}	Set-point voltage tolerance	$T_A = 25^{\circ}\text{C}$, $\text{I}_{\text{OUT}} = 200 \text{ mA}$		± 0.7	± 1.5 ⁽²⁾	%
	Temperature variation	$-40^{\circ}\text{C} \leq T_A \leq 105^{\circ}\text{C}$, $\text{I}_{\text{OUT}} = 0 \text{ A}$		± 0.9		%
	Line regulation	$T_A = 25^{\circ}\text{C}$, Over PV_{IN} range, $\text{I}_{\text{OUT}} = 300 \text{ mA}$		± 0.1		%
	Load regulation	$T_A = 25^{\circ}\text{C}$, $\text{I}_{\text{OUT}} = 300 \text{ mA}$ to I_{OUT} max		± 0.3		%
	Total output voltage variation	Includes set-point, line, load, and temperature		± 2		%
V_{OUT} ripple	Output voltage ripple	20-MHz Bandwidth		10		mV/pp
OUTPUT CURRENT						
I_{OUT}	Output current	$T_A = 105^{\circ}\text{C}$, natural convection	0	1.5	1.5	A
I_{OUT}	Output current	$T_A = 105^{\circ}\text{C}$, 200LFM	0	2	2	A
I_{OUT}	Output current	$T_A = 95^{\circ}\text{C}$, natural convection	0	2	2	A
I_{LIM}	Overcurrent threshold			2.5		A
PERFORMANCE						
η	Efficiency	$\text{PV}_{\text{IN}} = 12 \text{ V}$ $\text{I}_{\text{OUT}} = 1 \text{ A}$	$\text{V}_{\text{OUT}} = 7.5 \text{ V}$; $f_{\text{sw}} = 400 \text{ kHz}$	95		%
			$\text{V}_{\text{OUT}} = 5 \text{ V}$; $f_{\text{sw}} = 200 \text{ kHz}$	93		%
			$\text{V}_{\text{OUT}} = 5 \text{ V}$; $f_{\text{sw}} = 500 \text{ kHz}$	92		%
			$\text{V}_{\text{OUT}} = 3.3 \text{ V}$; $f_{\text{sw}} = 200 \text{ kHz}$	90		%
			$\text{V}_{\text{OUT}} = 2.5 \text{ V}$; $f_{\text{sw}} = 200 \text{ kHz}$	87		%
		$\text{PV}_{\text{IN}} = 24 \text{ V}$ $\text{I}_{\text{OUT}} = 1 \text{ A}$	$\text{V}_{\text{OUT}} = 7.5 \text{ V}$; $f_{\text{sw}} = 400 \text{ kHz}$	92		%
			$\text{V}_{\text{OUT}} = 5 \text{ V}$; $f_{\text{sw}} = 250 \text{ kHz}$	90		%
			$\text{V}_{\text{OUT}} = 5 \text{ V}$; $f_{\text{sw}} = 500 \text{ kHz}$	88		%
			$\text{V}_{\text{OUT}} = 3.3 \text{ V}$; $f_{\text{sw}} = 250 \text{ kHz}$	86		%
			$\text{V}_{\text{OUT}} = 2.5 \text{ V}$; $f_{\text{sw}} = 250 \text{ kHz}$	81		%
	Transient response	$\text{I}_{\text{OUT}} = 50\%$ load step 1 A/ μs slew rate	Recovery time	100		μs
			Over/Ubershoot	2		%
SLOW START						
T_{SS}	Internal slow start time	SS/TR pin open		4.1		ms
INHIBIT						
V_{INH} (high)	Inhibit control	Precision inhibit level	2.00	2.1	2.42	V
V_{INH} (low)		Inhibit turn-off hysteresis		-0.294		V
I_{I} (shutdown)	Input shutdown supply current	INH/UVLO pin connected to AGND		2.4	6.2 ⁽³⁾	μA
POWER GOOD (PWRGD)						
V_{PWRGD}	PWRGD thresholds	V_{OUT} rising	Good	95		%
			Fault	110		%
		V_{OUT} falling	Fault	90		%
			Good	105		%

(1) The minimum PV_{IN} is 4.5 V or $(\text{V}_{\text{OUT}} / 0.75)$, whichever is greater. For $\text{V}_{\text{OUT}} = 3.3 \text{ V}$, the minimum PV_{IN} is 4.75 V when $\text{I}_{\text{OUT}} > 1.5 \text{ A}$.

(2) The stated limit of the set-point voltage tolerance includes the tolerance of both the internal voltage reference and the internal adjustment resistor. The overall output voltage tolerance will be affected by the tolerance of the external R_{SET} resistor.

(3) Guaranteed by design. Not production tested.

Electrical Characteristics (continued)

Over -40°C to $+105^{\circ}\text{C}$ free-air temperature, $\text{PV}_{\text{IN}} = 24 \text{ V}$, $\text{V}_{\text{OUT}} = 5 \text{ V}$, $\text{I}_{\text{OUT}} = \text{I}_{\text{OUT}} \text{ max}$, $f_{\text{sw}} = 500 \text{ kHz}$, $\text{C}_{\text{IN}1} = 1 \times 10\text{-}\mu\text{F}$, 100-V 1210 ceramic, $\text{C}_{\text{IN}2} = 1 \times 100\text{-}\mu\text{F}$ 100-V electrolytic bulk, and $\text{C}_{\text{OUT}} = 3 \times 47\text{-}\mu\text{F}$, 16-V 1210 ceramic (unless otherwise noted).

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
THERMAL SHUTDOWN						
$\text{T}_{\text{SHUTDOWN}}$	Thermal shutdown	Shutdown Temperature		160		$^{\circ}\text{C}$
		Hysteresis		10		$^{\circ}\text{C}$
INPUT/OUTPUT CAPACITANCE						
C_{IN}	External input capacitance	ceramic		$10^{(4)}$		μF
		non-ceramic		100		μF
C_{OUT}	External output capacitance	Ceramic		$64^{(5)}$	See ⁽⁶⁾	μF
		Non-ceramic		100	See ⁽⁶⁾	μF
		ceramic + non-ceramic			See ⁽⁶⁾	μF
		Equivalent series resistance (ESR)			20	$\text{m}\Omega$

- (4) The specified minimum ceramic input capacitance represents the standard capacitance value. The actual effective capacitance after considering the effects of DC bias and temperature variation should be $\geq 4.7 \mu\text{F}$.
- (5) The amount of required output capacitance varies depending on the output voltage (see [Output Capacitor Selection](#)). The minimum required output capacitance must be comprised of ceramic capacitance. The amount of required ceramic capacitance represents the standard capacitance value. Locate the capacitance close to the device. Adding additional ceramic or non-ceramic capacitance close to the load improves the response of the regulator to load transients.
- (6) The maximum allowable output capacitance varies depending on the output voltage (see [Output Capacitor Selection](#)).

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
f_{sw}	Switching frequency	RT and RTSEL pins open	410	500	590	kHz
f_{CLK}	CLK Control	Synchronization frequency	200		1000	kHz
$V_{\text{CLK-H}}$		CLK high level	2		5.5	V
$V_{\text{CLK-L}}$		CLK low level			0.4	V
D_{CLK}		CLK duty cycle	10%	50%	90%	

6.7 Typical Characteristics

$T_A = 25^\circ\text{C}$, unless otherwise noted.

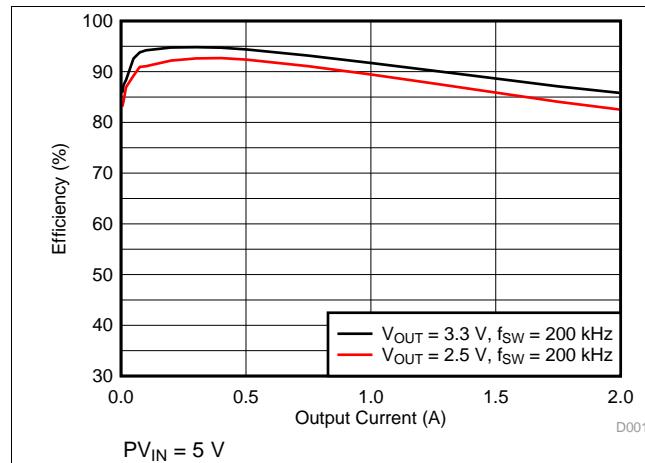


图 1. Efficiency vs Output Current

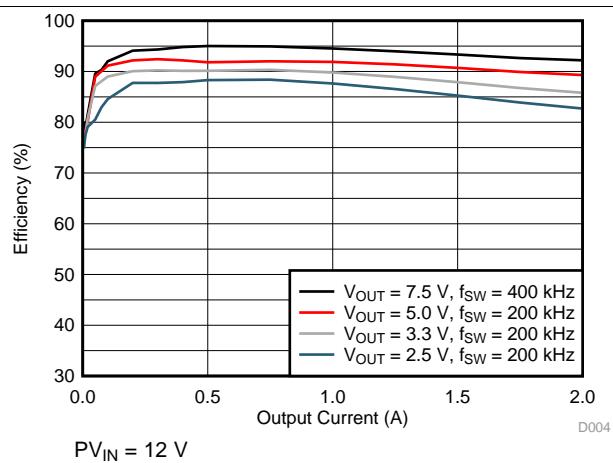


图 2. Efficiency vs Output Current

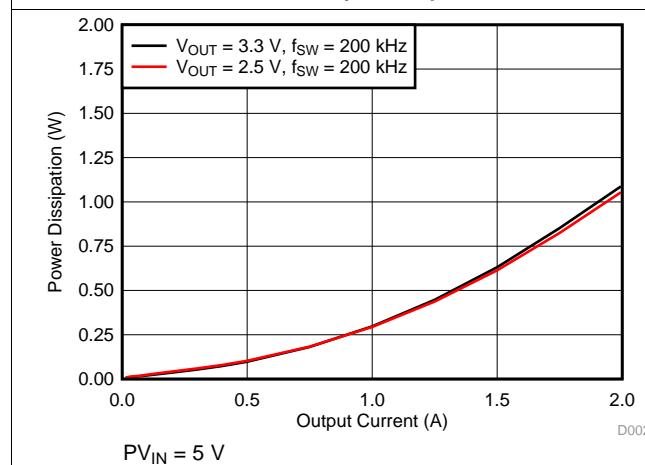


图 3. Power Dissipation vs Output Current



图 4. Power Dissipation vs Output Current

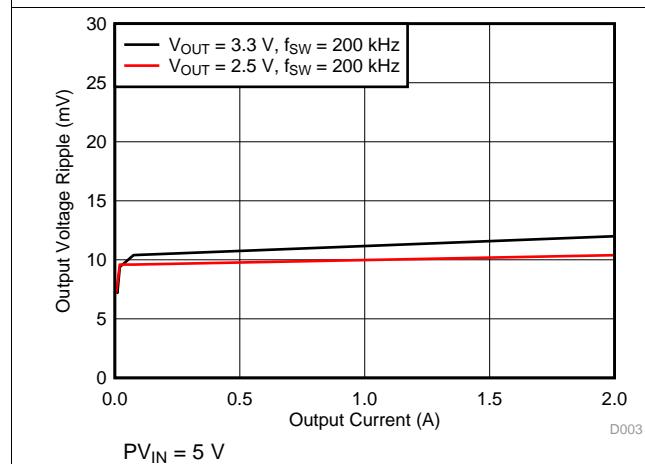


图 5. Voltage Ripple vs Output Current

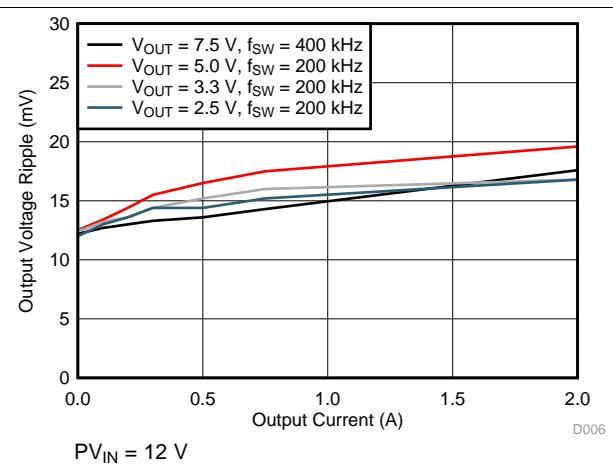


图 6. Voltage Ripple vs Output Current

Typical Characteristics (接下页)

$T_A = 25^\circ\text{C}$, unless otherwise noted.

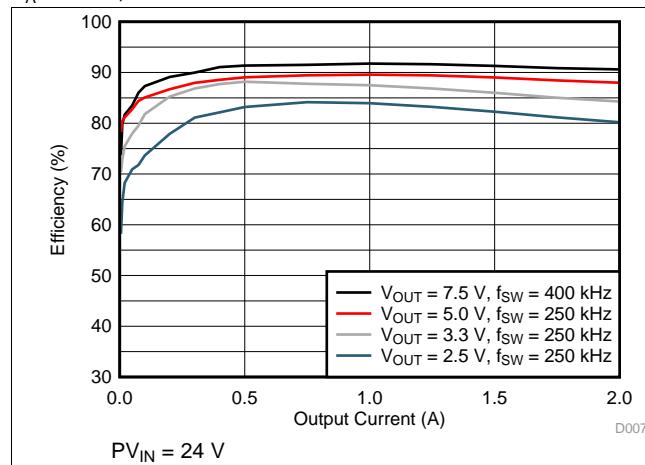


图 7. Efficiency vs Output Current

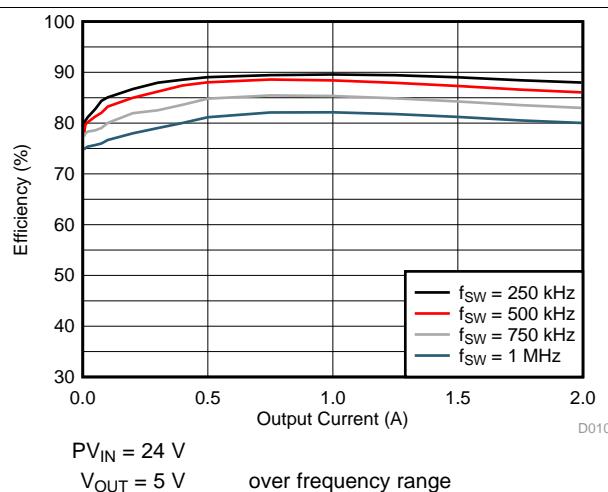


图 8. Efficiency vs Output Current

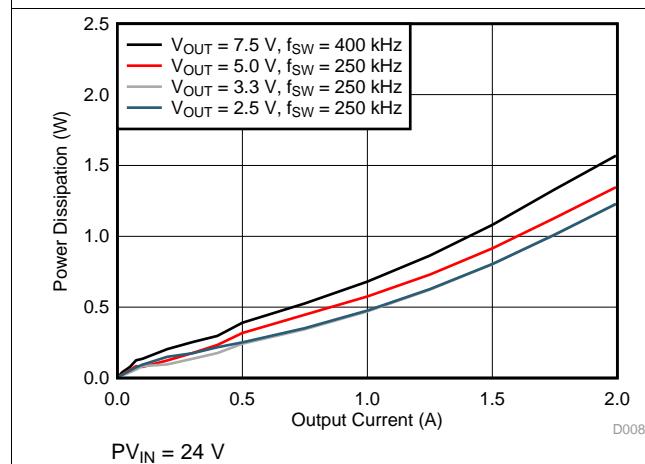


图 9. Power Dissipation vs Output Current

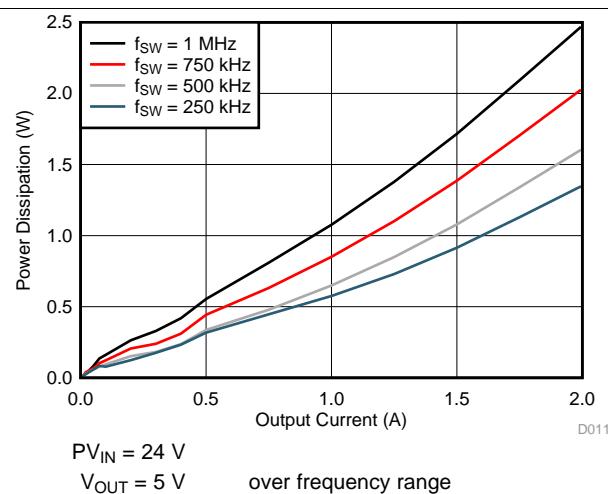


图 10. Power Dissipation vs Output Current

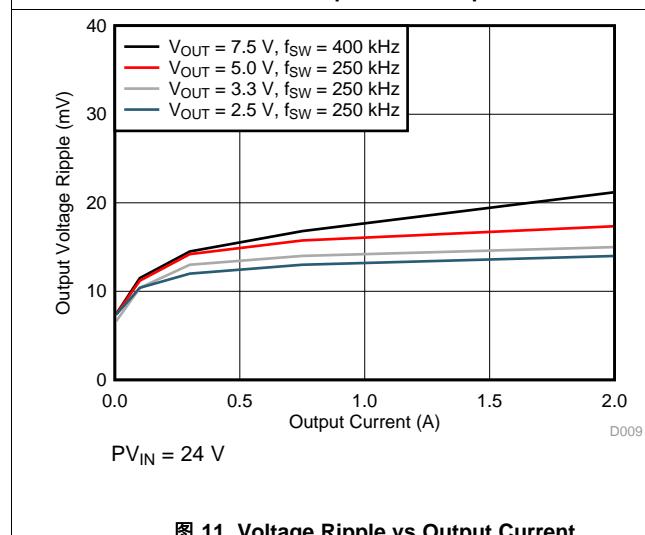


图 11. Voltage Ripple vs Output Current

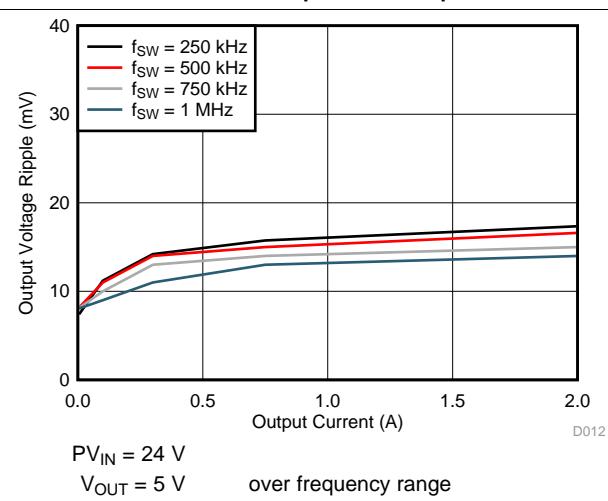


图 12. Voltage Ripple vs Output Current

Typical Characteristics (接下页)

$T_A = 25^\circ\text{C}$, unless otherwise noted.

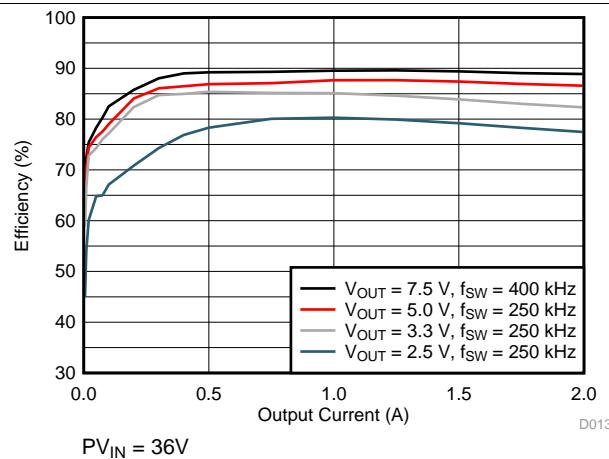


图 13. Efficiency vs Output Current

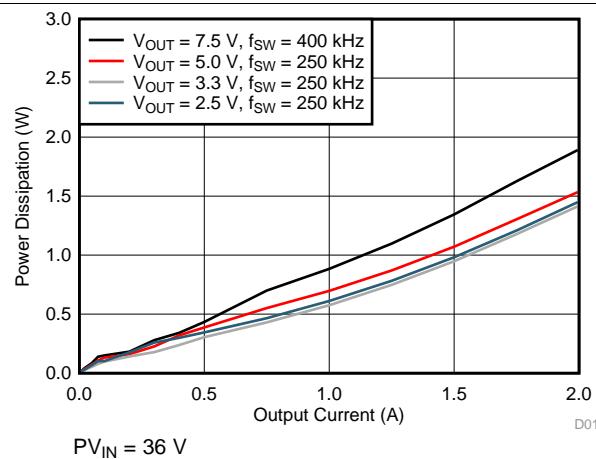


图 14. Power Dissipation vs Output Current

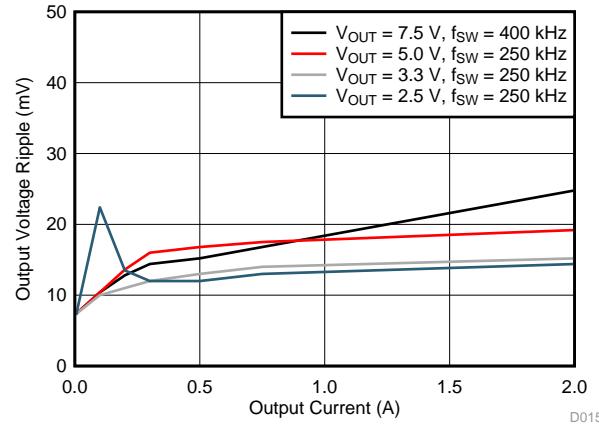


图 15. Voltage Ripple vs Output Current

6.8 Typical Characteristics (Thermal Derating)

The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to devices soldered directly to a 50 mm × 100 mm, 4-layer PCB with 2 oz. copper.

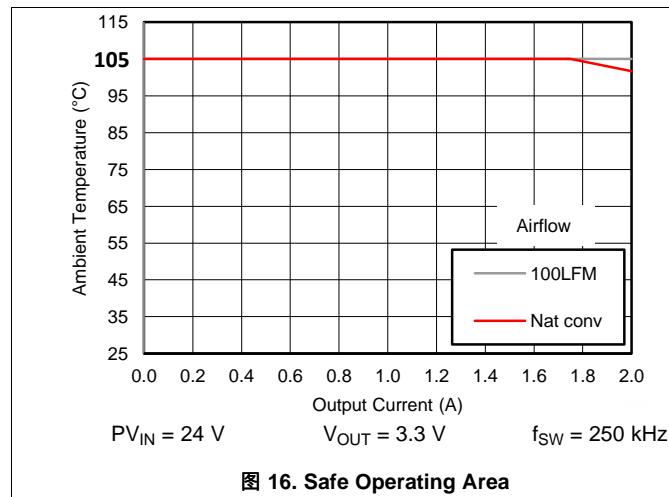


图 16. Safe Operating Area

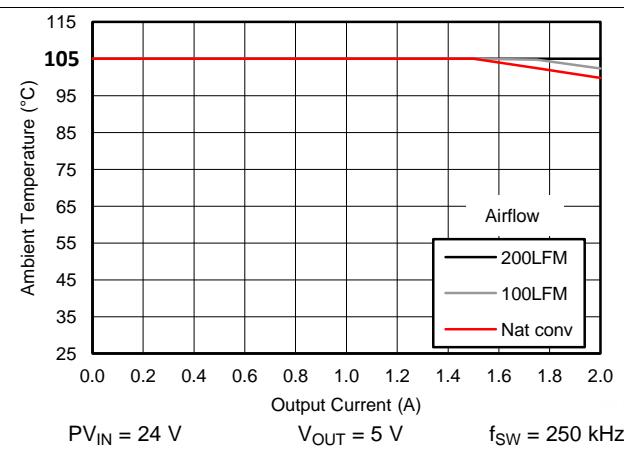
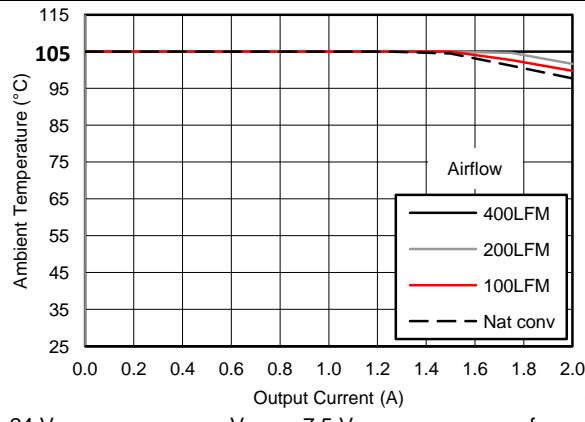
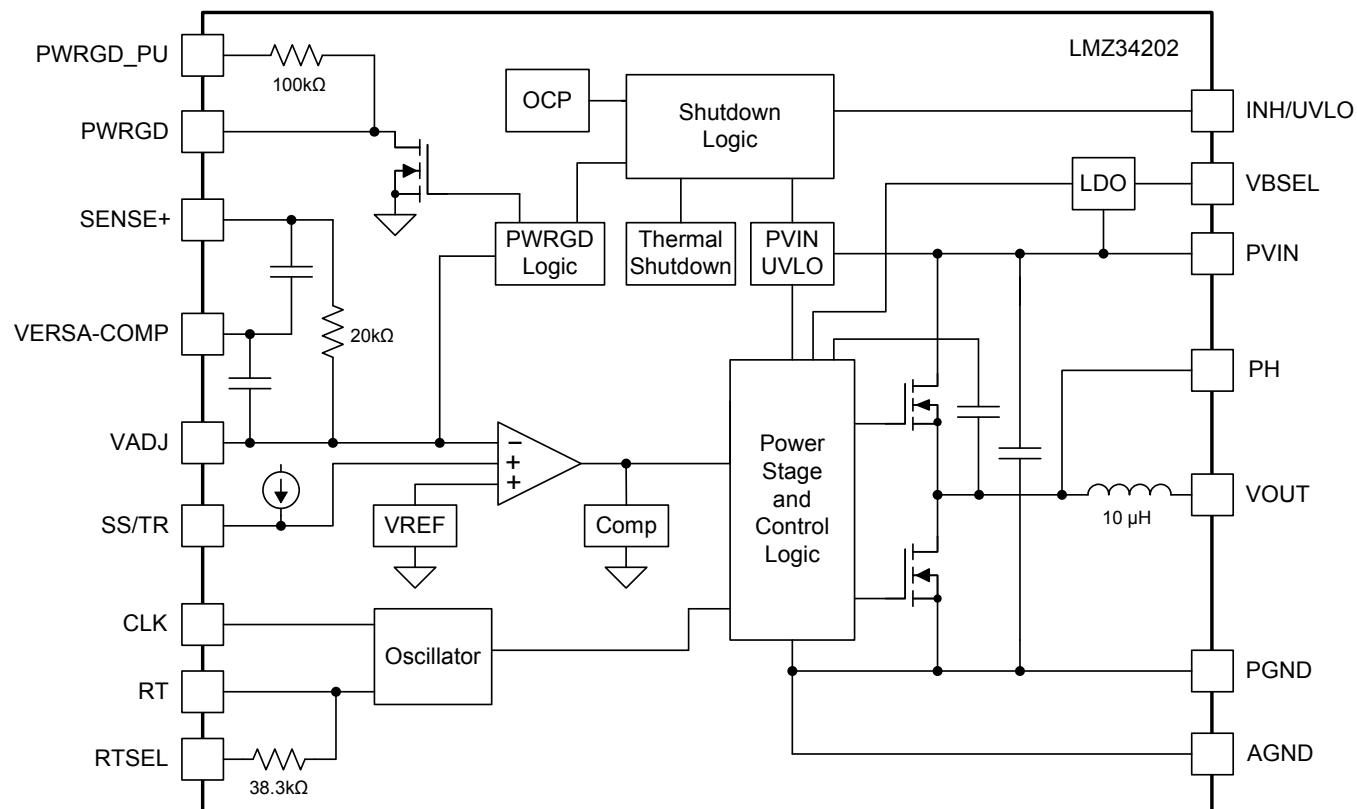


图 17. Safe Operating Area




图 18. Safe Operating Area

7 Detailed Description

7.1 Overview

The LMZ34202 is a full featured 42-V input, 2-A, synchronous step down converter with PWM, MOSFETs, inductor, and control circuitry integrated into a low-profile, overmolded package. This device enables small designs by integrating all but the input and output capacitors, while still leaving the ability to adjust key parameters to meet specific design requirements. The LMZ34202 provides a 3x output voltage range of 2.5 V to 7.5 V. A single external resistor is used to adjust the output voltage to the desired output. The switching frequency is also adjustable by using an external resistor or a synchronization pulse to accommodate various input and output voltage conditions and to optimize efficiency. The device provides accurate voltage regulation for a variety of loads by using an internal voltage reference that is 2% accurate over temperature. Input undervoltage lockout is internally set at 3.2 V, but can be adjusted upward using a resistor divider on the INH/UVLO pin of the device. The INH/UVLO pin can also be pulled low to put the device in standby mode to reduce input quiescent current. The device provides a power good signal to indicate when the output is within $\pm 5\%$ of its nominal voltage. Thermal shutdown and current limit features protect the device during an overload condition. Automatic PFM mode improves light-load efficiency. A 43-pin, QFN, package that includes exposed bottom pads provides a thermally enhanced solution for space-constrained applications.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Adjusting the Output Voltage

The VADJ pin sets the output voltage of the LMZ34202. The output voltage adjustment range is from 2.5 V to 7.5 V. The switching frequency range for any output voltage must be determined from 表 4 or 表 5. The adjustment method requires the addition of R_{SET} , which sets the output voltage, and the connection of SENSE+ to VOUT. The R_{SET} resistor must be connected directly between the VADJ (pin 24) and AGND. The SENSE+ pin (pin 22) must be connected to VOUT either at the load for improved regulation or at VOUT of the device. 表 1 lists the standard external R_{SET} resistor for a number of common bus voltages.

表 1. Standard R_{SET} Resistor Values for Common Output Voltages

	OUTPUT VOLTAGE V_{OUT} (V)				
	2.5	3.3	5.0	6.0	7.5
R_{SET} (kΩ)	13.7	8.87	5.11	4.02	3.09

For other output voltages, the value of the required resistor can either be calculated using the following formula, or simply selected from the range of values given in 表 2.

$$R_{SET} = \frac{20}{\left(\frac{V_{OUT}}{1.011}\right) - 1} \text{ (kΩ)} \quad (1)$$

表 2. Standard R_{SET} Resistor Values

V_{OUT} (V)	R_{SET} (kΩ)	V_{OUT} (V)	R_{SET} (kΩ)
2.5	13.7	5.1	4.99
2.6	12.7	5.2	4.87
2.7	11.8	5.3	4.75
2.8	11.3	5.4	4.64
2.9	10.7	5.5	4.53
3.0	10.2	5.6	4.42
3.1	9.76	5.7	4.32
3.2	9.31	5.8	4.22
3.3	8.87	5.9	4.12
3.4	8.45	6.0	4.02
3.5	8.06	6.1	3.97
3.6	7.87	6.2	3.92
3.7	7.50	6.3	3.83
3.8	7.32	6.4	3.74
3.9	6.98	6.5	3.65
4.0	6.81	6.6	3.61
4.1	6.49	6.7	3.57
4.2	6.34	6.8	3.48
4.3	6.19	6.9	3.40
4.4	5.90	7.0	3.36
4.5	5.76	7.1	3.32
4.6	5.62	7.2	3.24
4.7	5.49	7.3	3.20
4.8	5.36	7.4	3.16
4.9	5.23	7.5	3.09
5.0	5.11		

7.3.2 Switching Frequency (RT)

The switching frequency range of the LMZ34202 is 200 kHz to 1 MHz. Not all V_{IN} , V_{OUT} , and I_{OUT} conditions can be set to all of the frequencies in this range. See [Recommended Operating Range](#) for the allowable operating ranges. The switching frequency can easily be set one of three ways. First, leaving the RT pin (pin 9) and RTSEL pin (pin 10) floating (OPEN) allows operation at the default switching frequency of 500 kHz. Also, connecting the RTSEL pin to AGND while floating the RT pin, sets the switching frequency to 1 MHz. The option is also available to set the switching frequency to any frequency in the range of 200 kHz to 1 MHz, by connecting a resistor (R_{RT}) between the RT pin and AGND, while floating the RTSEL pin. See [表 3](#) for standard resistor values for setting the switching frequency or use [公式 2](#) to calculate R_{RT} for other switching frequencies.

表 3. Switching Frequency R_{RT} Values

Switching Frequency	R_{RT} (k Ω)
250 kHz	158
500 kHz	78.7 or (RT pin OPEN, RTSEL pin OPEN)
750 kHz	53.6
1 MHz	38.3 or (RT pin OPEN, RTSEL pin to AGND)

$$R_{RT} = \frac{40200}{F_{sw}(\text{kHz})} - 0.6 \quad (\text{k}\Omega) \quad (2)$$

7.3.3 Recommended Operating Range

[表 4](#) and [表 5](#) below show the allowable switching frequencies for a given range of output voltages. Reference [表 4](#) for applications where the maximum output current is 1.75 A or less. Reference [表 5](#) for applications that the output current is greater than 1.75 A. Notice that applications requiring less than 1.75 A can operate over a much wider range of switching frequencies. For the most efficient solution, always operate at the lowest allowable frequency.

**表 4. Switching Frequency vs Output Voltage
Output Current ≤ 1.75 A**

V_{OUT} RANGE (V)	SWITCHING FREQUENCY RANGE (kHz)					
	PVIN = 12 V		PVIN = 24 V		PVIN = 36 V	
	MIN	MAX	MIN	MAX	MIN	MAX
2.5 - 3.5 V	200	1000	200	600	200	400
>3.5 - 4.5 V	200	1000	200	850	200	550
>4.5 - 5.5 V	200	1000	200	1000	200	750
>5.5 - 6.5 V	300	1000	200	1000	200	1000
>6.5 - 7.5 V	300	900	300	1000	300	950

**表 5. Switching Frequency vs Output Voltage
Output Current > 1.75 A**

V_{OUT} RANGE (V)	SWITCHING FREQUENCY RANGE (kHz)					
	PVIN = 12 V		PVIN = 24 V		PVIN = 36 V	
	MIN	MAX	MIN	MAX	MIN	MAX
2.5 - 3.5 V	200	450	200	500	200	400
>3.5 - 4.5 V	200	500	200	600	200	550
>4.5 - 5.5 V	200	500	200	650	200	700
>5.5 - 6.5 V	300	500	250	700	250	800
>6.5 - 7.5 V	300	400	300	750	300	800

7.3.4 Synchronization (CLK)

The LMZ34202 switching frequency can also be synchronized to an external clock from 200 kHz to 1 MHz. Not all $P_{V_{IN}}$, V_{OUT} , and I_{OUT} conditions can be set to all of the frequencies in this range. See [Recommended Operating Range](#) for the allowable operating ranges.

To implement the synchronization feature, connect a clock signal to the CLK pin with a duty cycle between 10% and 90%. The clock signal amplitude must transition lower than 0.4 V and higher than 2.0 V. The start of the switching cycle is synchronized to the rising edge of CLK pin. Before the external clock is present the device operates in RT mode and the switching frequency is set by R_{RT} resistor. Select R_{RT} to set the frequency close to the external synchronization frequency. When the external clock is present, the CLK mode overrides the RT mode. If the external clock is removed or fails at logic high or low, the LMZ34202 will switch at the frequency programmed by the R_{RT} resistor after a time-out period. Connect the CLK pin (pin 8) to AGND if not used.

7.3.5 Output Capacitor Selection

The minimum required and maximum output capacitance of the LMZ34202 is a function of the output voltage as shown in [表 6](#). Additionally, the output voltage will determine the Versa-Comp configuration (see [VERSA-COMP Pin Configurations](#)), which is also included in [表 6](#). The capacitance values listed in [表 6](#) are the specified capacitance values. The effects of DC bias and temperature variation must be considered when using ceramic capacitance. For ceramic capacitors, package size, voltage rating, and dielectric material will contribute to differences between the specified value and the actual effective value of the capacitance. $C_{OUT(min)}$ must be comprised of ceramic type capacitors. Additional capacitance, not exceeding $C_{OUT(max)}$, may be ceramic type or low-ESR polymer type. See [表 7](#) for a preferred list of output capacitors by vendor.

表 6. Required Output Capacitance

V_{OUT} (V)	MINIMUM REQUIRED C_{OUT} (μ F) ⁽¹⁾ ⁽²⁾	MAXIMUM C_{OUT} (μ F) ⁽²⁾	Versa-Comp Connection
2.5	64	350	Leave OPEN
3.3	64	350	Connect to VADJ
5.0	64	350	Connect to VADJ
6.0	64	200	Connect to VADJ
7.5	100	200	Connect to VADJ

(1) Minimum required output capacitance must be comprised of ceramic capacitance.

(2) C_{OUT} values represent specified capacitance values.

表 7. Recommended Output Capacitors⁽¹⁾

VENDOR	SERIES	PART NUMBER	CAPACITOR CHARACTERISTICS		
			WORKING VOLTAGE (V)	CAPACITANCE ⁽²⁾ (μ F)	ESR ⁽³⁾ (m Ω)
TDK	X5R	C3225X5R1C106K	16	10	2
Murata	X5R	GRM32ER61C106K	16	10	2
TDK	X5R	C3225X5R1C226M	16	22	2
Murata	X5R	GRM32ER61C226K	16	22	2
TDK	X5R	C3225X5R1A476M	10	47	2
Murata	X5R	GRM32ER61C476K	16	47	3
TDK	X5R	C3225X5R0J107M	6.3	100	2
Murata	X5R	GRM32ER60J107M	6.3	100	2
Murata	X5R	GRM32ER61A107M	10	100	2
Kemet	X5R	C1210C107M4PAC7800	16	100	2
Panasonic	POSCAP	6TPE100MI	6.3	100	18
Panasonic	POSCAP	6TPF220M9L	6.3	220	9
Panasonic	POSCAP	6TPE220ML	6.3	220	12

(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details

Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in this table.

(2) Specified capacitance values.

(3) Maximum ESR @ 100kHz, 25°C.

7.3.6 VERSA-COMP Pin Configurations

The versa-comp feature of the LMZ34202 allows a simple method to adjust the internal compensation network to provide the optimized phase and gain margin based on the output voltage. This easy-to-use feature requires no external components and is implemented by the simple configuration of two adjacent pins on the module.

The versa-comp feature must be configured in one of two ways; VERSA-COMP pin left OPEN or VERSA-COMP pin tied to VADJ. The output voltage determines the appropriate Versa-Comp pin configuration. [表 8](#) lists the Versa-Comp configuration. [图 19](#) shows the two possible Versa-Comp pin configurations.

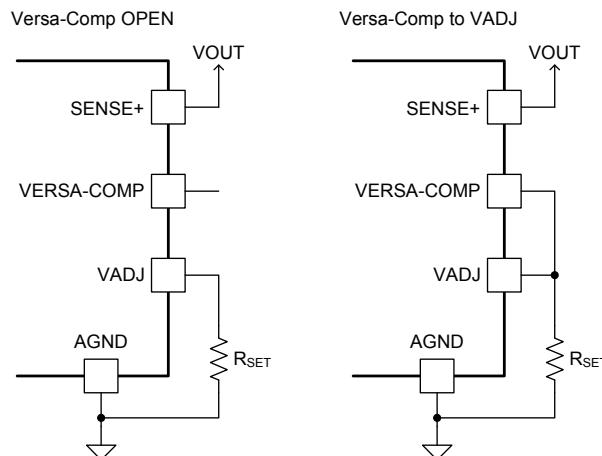


图 19. Versa-Comp Configurations

表 8. VERSA-COMP Pin Configurations

V _{OUT} RANGE (V)		VERSACOMP PIN CONFIGURATION
MIN	MAX	
2.5	< 3.0	OPEN
3.0	7.5	Connect to VADJ

7.3.7 Input Capacitor Selection

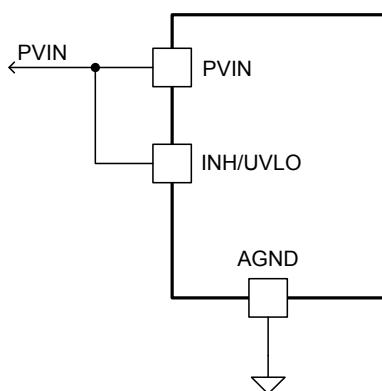
The LMZ34202 requires a ceramic capacitor with a minimum effective input capacitance of 4.7 μ F. Use only high-quality ceramic type X5R or X7R capacitors with sufficient voltage rating. An additional 100 μ F of non-ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of input capacitors must be greater than the maximum input voltage. To compensate the derating of ceramic capacitors, a voltage rating of twice the maximum input voltage is recommended. At worst case, when operating at 50% duty cycle and maximum load, the combined ripple current rating of the input capacitors must be at least 1.0 Arms. [表 9](#) includes a preferred list of capacitors by vendor.

表 9. Recommended Input Capacitors⁽¹⁾

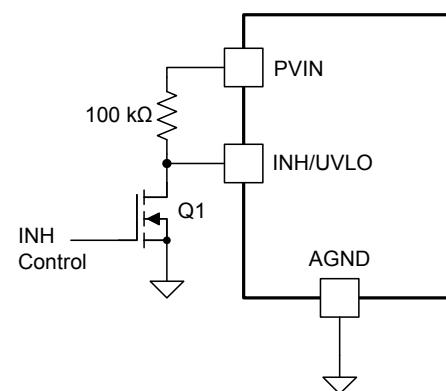
VENDOR	SERIES	PART NUMBER	CAPACITOR CHARACTERISTICS		
			WORKING VOLTAGE (V)	CAPACITANCE ⁽²⁾ (μ F)	ESR ⁽³⁾ (m Ω)
TDK	X5R	C3225X5R1H106K	50	10	3
Murata	X7R	GRM32ER71H106K	50	10	2
Murata	X7R	GRM32ER71J106K	63	10	2
Panasonic	ZA	EEHZA1H101P	50	100	28
Panasonic	ZA	EEHZA1J560P	63	56	30

(1) **Capacitor Supplier Verification, RoHS, Lead-free and Material Details**

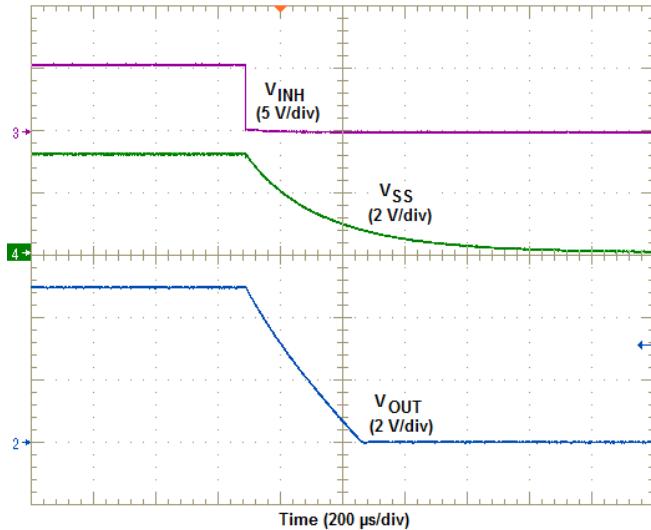
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in this table.


(2) Specified capacitance values

(3) Maximum ESR @ 100kHz, 25°C.


7.3.8 Output On/Off Inhibit (INH/UVLO)

The INH/UVLO pin provides on and off control of the device. The INH input provides a precise 2.1 V rising threshold to allow direct logic drive or connection to a voltage divider from a higher voltage source such as PV_{IN}. Once the INH/UVLO pin voltage exceeds the threshold voltage, the device starts operation. The INH input also incorporates 300 mV (typ) of hysteresis resulting in a falling threshold of 1.8 V. If the INH/UVLO pin voltage is pulled below the threshold voltage, the regulator stops switching and enters low quiescent current state. The INH/UVLO pin cannot be open circuit or floating. The simplest way to enable the operation of the LMZ34202 is to connect the INH/UVLO pin to PVIN pin directly as shown in [图 20](#). This connection allows the LMZ34202 device to restart when PV_{IN} is again within the operation range.


If an application requires controlling the INH/UVLO pin, either drive it directly with a logic input or use an open drain and collector device to interface with the pin and place a 100-k Ω resistor between this pin and PVIN pin as shown in [图 21](#). When turning Q1 on applies a low voltage to the inhibit control (INH/UVLO) pin and disables the output of the supply, shown in [图 22](#). If Q1 is turned off, the supply executes a soft-start power-up sequence, as shown in [图 23](#).

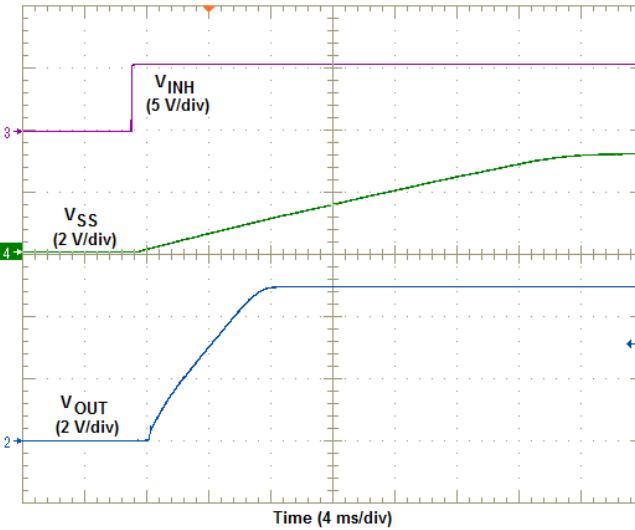

图 20. Enabling the Device

图 21. Typical Inhibit Control

图 22. Inhibit Turn-Off

图 23. Inhibit Turn-On

7.3.9 Under Voltage Lockout (UVLO)

The LMZ34202 device has an internal UVLO circuit which prevents the device from operating until the $P_{V_{IN}}$ voltage exceeds the UVLO threshold, (3.2 V (typ)). The device will begin switching and the output voltage will begin to rise once $P_{V_{IN}}$ exceeds the threshold, however $P_{V_{IN}}$ must be greater than $(V_{OUT}/0.75)$ in order to for V_{OUT} to regulate at the set-point voltage.

Applications may require a higher UVLO threshold to prevent early turn-on, for sequencing requirements, or to prevent input current draw at lower input voltages. An external resistor divider can be added to the INH/UVLO pin to adjust the UVLO threshold higher. The external resistor divider can be configured as shown in [图 24. 表 10](#) lists standard values for R_{UVLO1} and R_{UVLO2} to adjust the UVLO voltage higher.

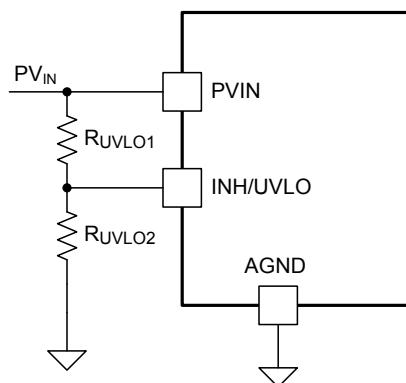


图 24. Adjustable PVIN UVLO

表 10. Resistor Values for Adjusting PVIN UVLO

PVIN UVLO (V)	4.5	10	15	20	25	30
R_{UVLO1} (kΩ)	100	100	100	100	100	100
R_{UVLO2} (kΩ)	46.4	21.0	14.0	10.5	8.45	6.98

7.3.10 Remote Sense

The SENSE+ pin must be connected to V_{OUT} at the load, or at the device pins.

Connecting the SENSE+ pin to V_{OUT} at the load improves the load regulation performance of the device by allowing it to compensate for any I-R voltage drop between its output pins and the load. An I-R drop is caused by the high output current flowing through the small amount of pin and trace resistance. This should be limited to a maximum of 300 mV.

注

The remote sense feature is not designed to compensate for the forward drop of nonlinear or frequency dependent components that may be placed in series with the converter output. Examples include OR-ing diodes, filter inductors, ferrite beads, and fuses. When these components are enclosed by the SENSE+ connection, they are effectively placed inside the regulation control loop, which can adversely affect the stability of the regulator.

7.3.11 VBSEL

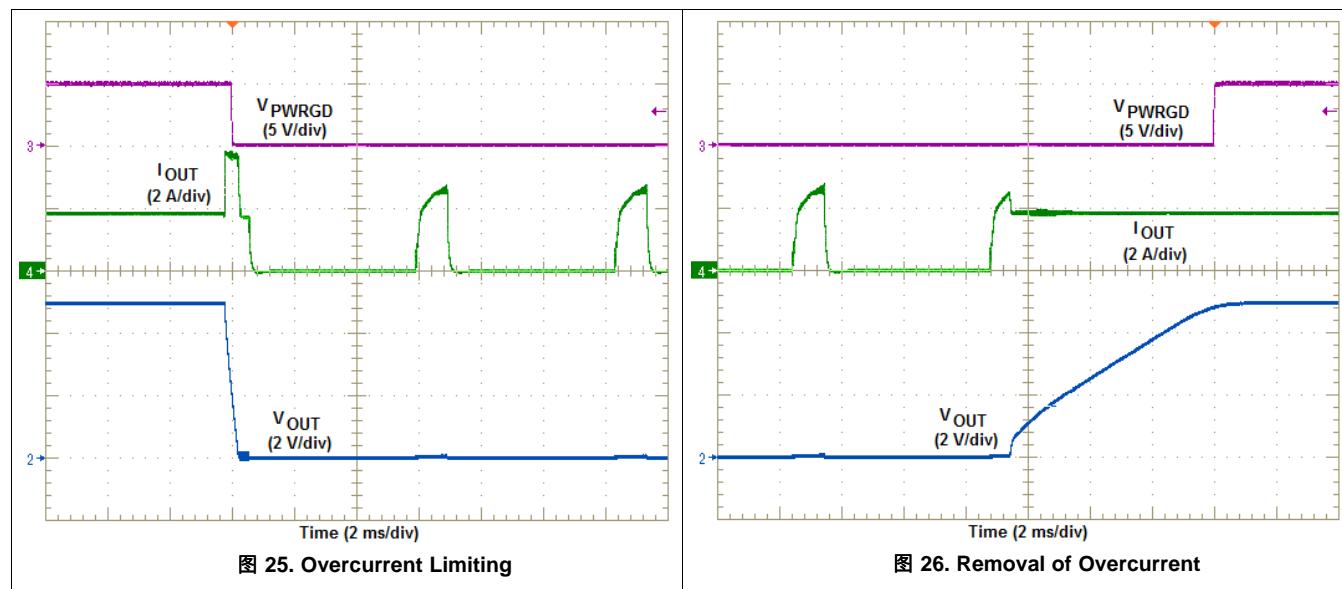
The VBSEL pin allows the user to select the input source of the internal bias circuitry to improve efficiency. For output voltages ≥ 4.5 V, connect this pin to V_{OUT} . For output voltages < 4.5 V, connect this pin to AGND.

7.3.12 Soft-Start (SS/TR)

Leaving SS/TR pin open enables the internal slow start time interval of approximately 4.1 ms. Adding additional capacitance between the SS pin and AGND increases the slow start time. Increasing the slow start time will reduce inrush current seen by the input source and reduce the current seen by the device when charging the output capacitors. To avoid the activation of current limit and ensure proper start-up, the SS capacitor may need to be increased when operating near the maximum output capacitance limit.

See 表 11 below for SS capacitor values and timing interval.

表 11. Soft-Start Capacitor Values and Soft-Start Time


C_{SS} (nF)	open	15	22	33	47
SS Time (ms)	4.1	7	10	15	20

7.3.13 Power Good (PWRGD) and Pull-up (PWRGD_PU)

The PWRGD pin is an open drain output. Once the voltage on the SENSE+ pin is between 95% and 105% of the set voltage, the PWRGD pin pull-down is released and the pin floats. The recommended pullup resistor value is between 10 k Ω and 100-k Ω to a voltage source that is 12 V or less. The LMZ34202 has an internal 100-k Ω between the PWRGD pin (pin 20) and the PWRGD_PU pin (pin 21). Connect the PWRGD_PU pin to an external voltage source to avoid using an external pullup resistor. The PWRGD pin is pulled low when the voltage on SENSE+ is lower than 90% or greater than 110% of the nominal set voltage.

7.3.14 Overcurrent Protection

For protection against load faults, the LMZ34202 incorporates output overcurrent protection. Applying a load that exceeds the regulator's overcurrent threshold causes the output to shut down when the output voltage falls below the PWRGD threshold. Following shutdown, the module periodically attempts to recover by initiating a soft-start power-up as shown in 图 25. This is described as a hiccup mode of operation, whereby the module continues in a cycle of successive shutdown and power up until the load fault is removed. During this period, the average current flowing into the fault is significantly reduced which reduces power dissipation. Once the fault is removed, the module automatically recovers and returns to normal operation as shown in 图 26.

7.3.15 Thermal Shutdown

The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds 160°C typically. The device reinitiates the power up sequence when the junction temperature drops below 150°C typically.

7.4 Device Functional Modes

7.4.1 Active Mode

The LMZ34202 is in Active Mode when P_{VIN} is above the UVLO threshold and the INH/UVLO pin voltage is above the INH high threshold. The simplest way to enable the LMZ34202 is to connect the INH/UVLO terminal to P_{VIN} . This allows self start-up of the LMZ34202 when the input voltage is in the operation range: 4.5 V to 42 V.

7.4.2 Light Load Operation

At light load, the LMZ34202 operates in pulse skip mode to improve efficiency and decrease power dissipation by reducing switching losses and gate drive losses. In light load operation (PFM mode), the output voltage can rise slightly above the set-point specification. To avoid this behavior, a 300-mA load is required on the output.

7.4.3 Shutdown Mode

The INH/UVLO pin provides electrical ON and OFF control for the LMZ34202. When the INH/UVLO pin voltage is below the INH threshold, the device is in shutdown mode. In shutdown mode the stand-by current is 2.4 μ A typically with $P_{VIN} = 24$ V. The LMZ34202 also employs under voltage lock out protection. If P_{VIN} is below the UVLO level, the output of the regulator turns off.

8 Applications and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMZ34202 is a synchronous step down DC-DC power module. It is used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 2 A. The following design procedure can be used to select components for the LMZ34202. Alternately, the WEBENCH® software may be used to generate complete designs. When generating a design, the WEBENCH software utilizes an iterative design procedure and accesses comprehensive databases of components. Please visit www.ti.com/webench for more details.

8.1.1 Minimum External Component Application

The LMZ34202 requires only a few external components to convert from a wide input voltage supply range to a wide range of output voltages. [图 27](#) shows a basic LMZ34202 schematic with only the minimum required components.

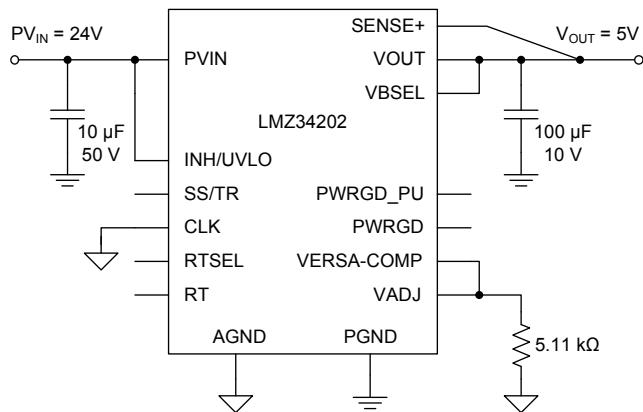


图 27. LMZ34202 Minimum External Component Application

8.1.1.1 Design Requirements

For this design example, use the parameters listed in [表 12](#) and follow the design procedures below.

表 12. Design Example Parameters

DESIGN PARAMETER	VALUE
Input Voltage PV _{IN}	24 V typical
Output Voltage V _{OUT}	5.0 V
Output Current Rating	2 A
Operating Frequency	500 kHz

8.1.1.2 Detailed Design Procedure

8.1.1.2.1 Output Voltage Set-Point

The output voltage of the LMZ34202 device is externally adjustable using a single resistor (R_{SET}). Select the value of R_{SET} from [表 2](#) or calculate using [公式 3](#):

$$R_{SET} = \frac{20}{\left[\left(\frac{V_{OUT}}{1.011} \right) - 1 \right]} \text{ (k}\Omega\text{)} \quad (3)$$

Knowing the desired output voltage is 5 V, the R_{SET} value can then be calculated using [公式 3](#) or selected from [表 2](#). The formula yields a value of 5.07 k Ω . Choose the closest available value of 5.11 k Ω for R_{SET} .

8.1.1.2.2 RT and RTSEL

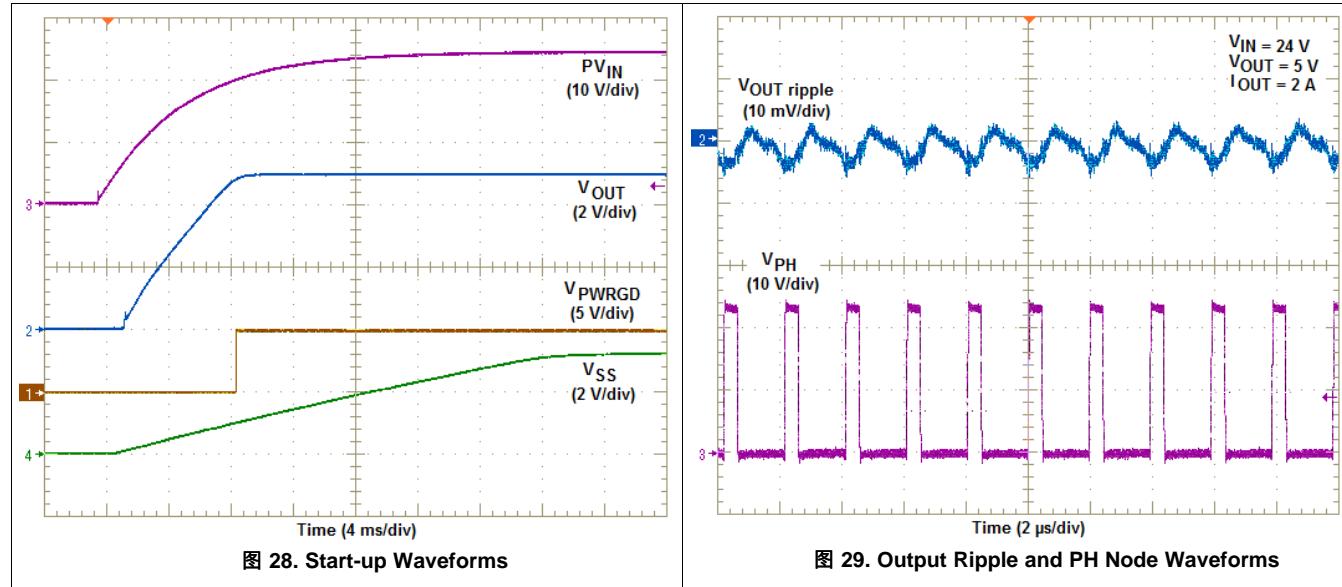
The default switching frequency of the LMZ34202 is set to 500 kHz by leaving the RT pin open and the RTSEL pin open. The switching frequency of this application is 500-kHz, therefore no additional resistor is required to set the switching frequency. If another frequency is desired, use [表 3](#) to select the required resistor value.

8.1.1.2.3 VERSA-COMP

The Versa-Comp feature of the LMZ34202 configures the internal compensation based on the output voltage. From [表 8](#), the required Versa-Comp configuration for a 5-V output is to connect the VERSA-COMP pin to the VADJ pin.

8.1.1.2.4 VBSEL

The VBSEL pin allows the user to select the input source of the internal bias circuitry to improve efficiency. For output voltages ≥ 4.5 V, connect this pin to VOUT. For output voltages < 4.5 V, connect this pin to AGND.


8.1.1.2.5 Input Capacitors

For this design, a 10- μ F, X7R dielectric ceramic capacitor rated for 50 V is used for the input decoupling capacitor. The effective capacitance at 24 V is 5.7 μ F, the equivalent series resistance (ESR) is approximately 3 m Ω , and the current-rating is 5 A.

8.1.1.2.6 Output Capacitors

The minimum required output capacitance for a 5 V output is 64 μ F of ceramic capacitance. For this design, a 100 μ F, X5R dielectric ceramic capacitor rated for 10 V is used for the output capacitor.

8.1.1.2.7 Application Waveforms

8.1.2 INH Control Application

图 30 显示了一个更典型的使用示例，它利用了 INH 控制、Versa-Comp、SS、PWRGD 和 PWRGD_PU 功能，以及通过外部电阻调整开关频率。设置这些附加功能的说明如下。

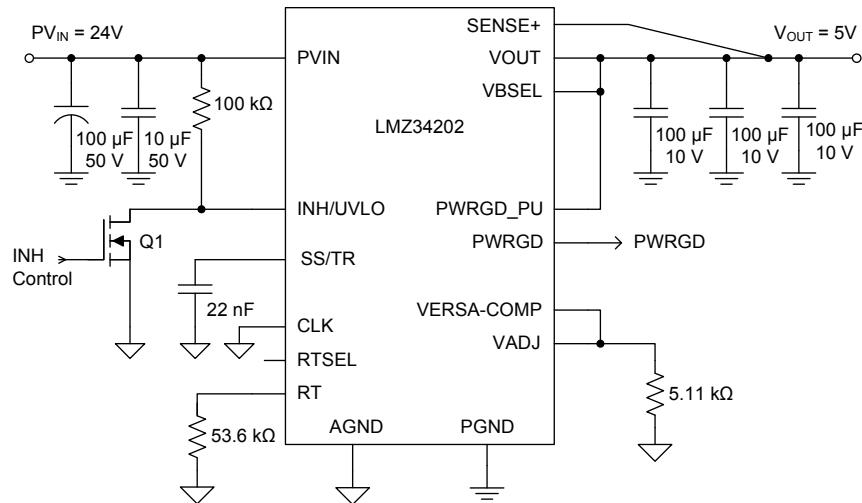


图 30. LMZ34202 Typical Schematic

8.1.2.1 Design Requirements

对于此设计示例，使用表 13 中列出的参数作为输入参数。对于完整的设计流程，请从基本应用示例开始，然后参考以下列出的流程。

表 13. Design Example Parameters

DESIGN PARAMETER	VALUE
Input Voltage PV_{IN}	24 V typical
Output Voltage V_{OUT}	5.0 V
Output Current Rating	2 A
Operating Frequency	750 kHz
Inhibit Control	Yes
Power Good Signal	Yes
Slow Start Time	10 ms
Output Capacitance	300 μ F

8.1.3 Detailed Design Procedure

8.1.3.1 Switching Frequency

要调整开关频率，请在 RT 引脚（引脚 9）和 AGND 之间放置一个电阻。参考表 3 选择所需的 RT 电阻值。要将开关频率设置为 750 kHz，所需的 RT 电阻值为 53.6 kΩ，从表 3 选择。

8.1.3.2 Power Good

Power Good 引脚是一个开漏输出。LMZ34202 包含一个从 Power Good 引脚到 PWRGD_PU 引脚的 100 kΩ 上拉电阻。将 PWRGD_PU 引脚连接到上拉电压，可以使用 Power Good 信号而无需添加额外的组件。在本示例中，5-V 输出被用作上拉电压。

8.1.3.3 Inhibit Control

To control the turn ON and OFF of the LMZ34202, an open-drain and collector device is recommended. The open-drain and collector device must be rated for the maximum voltage applied to PVIN. A pull-up resistor is required between the INH/UVLO pin and PVIN. Place a 100-k Ω resistor between the INH/UVLO pin and the PVIN pin.

8.1.3.4 VERSA-COMP

The Versa-Comp feature of the LMZ34202 configures the internal compensation based on the output voltage. From [表 8](#), the required Versa-Comp configuration for a 5-V output is to connect the VERSA-COMP pin to the VADJ pin.

8.1.3.5 VBSEL

The VBSEL pin allows the user to select the input source to the internal power circuitry to improve efficiency. For output voltages \geq 4.5 V, connect this pin to VOUT. For output voltages $<$ 4.5 V, connect this pin to AGND.

8.1.3.6 Soft-Start Capacitors

When the SS/TRK pin remains floating the LMZ34202 implements a typical soft-start time of 4.1 ms. In order to increase the slow start time, an external slow start capacitor, C_{SS} must be placed between the SS/TRK pin and AGND. Select a value for C_{SS} from [表 11](#).

For the desired soft-start time of 10 ms, a soft-start capacitor value of 22 nF is selected from [表 11](#).

8.1.3.7 Input Capacitors

For this design, a 10- μ F ceramic capacitor plus a 100- μ F aluminum electrolytic capacitor, both rated for 50 V are used for the input decoupling capacitors.

8.1.3.8 Output Capacitors

The maximum allowable output capacitance for a 5-V output is 350 μ F of capacitance. At least 64 μ F of capacitance must be ceramic type. For this design, 3x 100- μ F, X5R dielectric ceramic capacitors rated for 10 V are used for the output capacitors.

9 Power Supply Recommendations

The LMZ34202 is designed to operate from an input voltage supply range between 4.5 V and 42 V. This input supply should be well regulated and able to withstand maximum input current and maintain a stable voltage. The resistance of the input supply rail should be low enough that an input current transient does not cause a high enough drop at the LMZ34202 supply voltage that can cause a false UVLO fault triggering and system reset.

If the input supply is located more than a few inches from the LMZ34202 additional bulk capacitance may be required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is 47 μ F or the typical amount of electrolytic capacitance is 100 μ F.

10 Layout

The performance of any switching power supply depends as much upon the layout of the PCB as the component selection. The following guidelines will help users design a PCB with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI.

10.1 Layout Guidelines

To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 图 31 thru 图 34, shows a typical PCB layout. Some considerations for an optimized layout are:

- Use large copper areas for power planes (PVIN, VOUT, and PGND) to minimize conduction loss and thermal stress.
- Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.
- Locate additional output capacitors between the ceramic capacitor and the load.
- Keep AGND and PGND separate from one another. The connection is made internal to the device.
- Place R_{SET} , R_{RT} , and C_{SS} as close as possible to their respective pins.
- Use multiple vias to connect the power planes to internal layers.

10.2 Layout Example

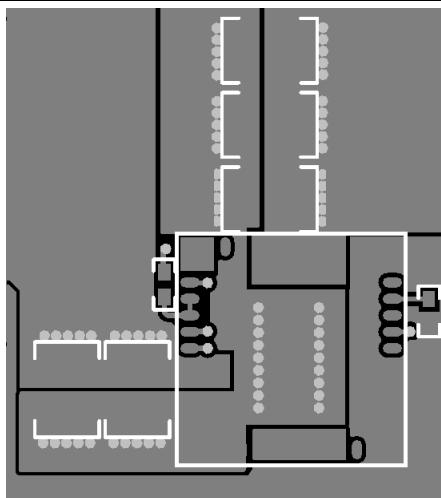


图 31. Typical Top-Layer Layout

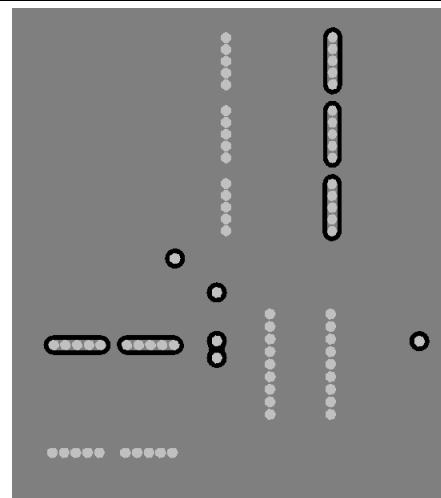


图 32. Typical Layer-2 Layout

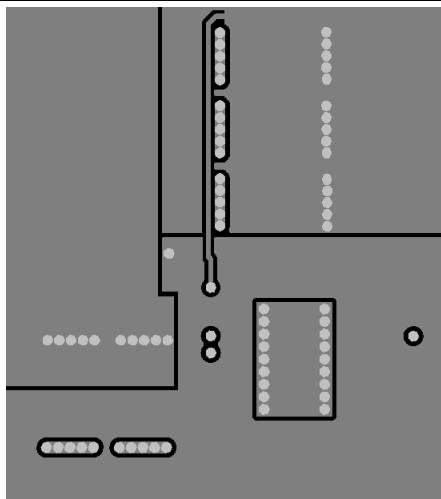


图 33. Typical Layer-3 Layout

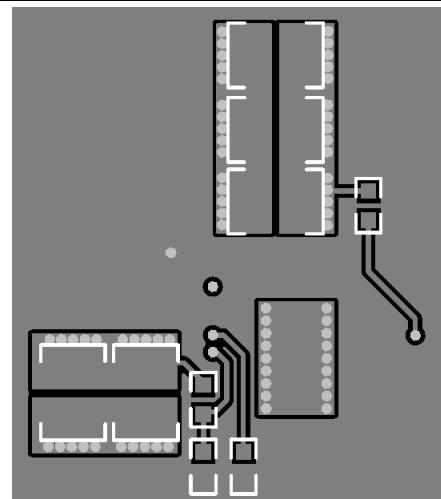
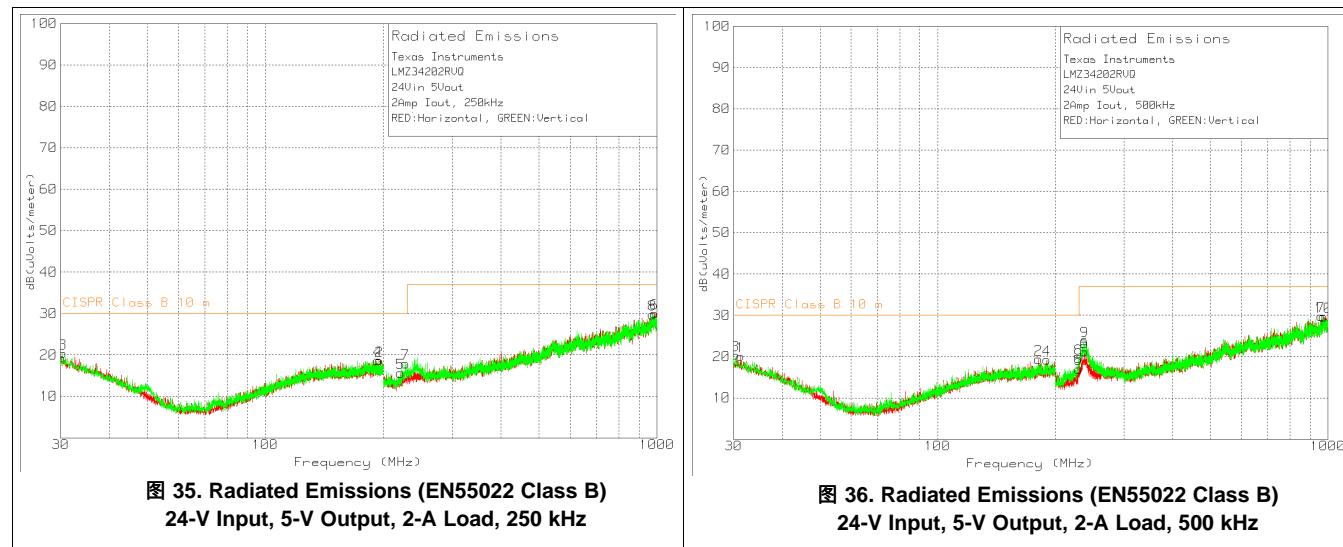



图 34. Typical Bottom-Layer Layout

10.3 EMI

The LMZ34202 is compliant with EN55022 Class B radiated emissions. [图 35](#) [图 36](#) show typical examples of radiated emissions plots for the LMZ34202 operating from 24 V. Both graphs include the plots of the antenna in the horizontal and vertical positions.

11 器件和文档支持

11.1 器件支持

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

E2E is a trademark of Texas Instruments.

SIMPLE SWITCHER, WEBENCH are registered trademarks of Texas Instruments.

11.4 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时, 应将导线一起截短或将装置放置于导电泡棉中, 以防止 MOS 门极遭受静电损伤。

11.5 Glossary

[SLYZ022 — TI Glossary](#).

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本, 请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 **JESD46** 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 **JESD48** 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的**TI** 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 **TI** 半导体产品销售条件与条款的适用规范。仅在 **TI** 保证的范围内, 且 **TI** 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定, 否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 **TI** 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险, 客户应提供充分的设计与操作安全措施。

TI 不对任何 **TI** 专利权、版权、屏蔽作品权或其它与使用了 **TI** 组件或服务的组合设备、机器或流程相关的 **TI** 知识产权中授予的直接或隐含权限作出任何保证或解释。**TI** 所发布的与第三方产品或服务有关的信息, 不能构成从 **TI** 获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可, 或是 **TI** 的专利权或其它知识产权方面的许可。

对于 **TI** 的产品手册或数据表中 **TI** 信息的重要部分, 仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。**TI** 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 **TI** 组件或服务时, 如果对该组件或服务参数的陈述与 **TI** 标明的参数相比存在差异或虚假成分, 则会失去相关 **TI** 组件或服务的所有明示或暗示授权, 且这是不正当的、欺诈性商业行为。**TI** 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意, 尽管任何应用相关信息或支持仍可能由 **TI** 提供, 但他们将独自负责满足与其产品及在其应用中使用 **TI** 产品相关的所有法律、法规和安全相关要求。客户声明并同意, 他们具备制定与实施安全措施所需的全部专业技术知识, 可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类安全关键应用中使用任何 **TI** 组件而对 **TI** 及其代理造成任何损失。

在某些场合中, 为了推进安全相关应用有可能对 **TI** 组件进行特别的促销。**TI** 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此, 此类组件仍然服从这些条款。

TI 组件未获得用于 **FDA Class III** (或类似的生命攸关医疗设备) 的授权许可, 除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 **TI** 特别注明属于军用等级或“增强型塑料”的 **TI** 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同意, 对并非指定面向军事或航空航天用途的 **TI** 组件进行军事或航空航天方面的应用, 其风险由客户单独承担, 并且由客户独自负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 **ISO/TS16949** 要求的产品, 这些产品主要用于汽车。在任何情况下, 因使用非指定产品而无法达到 **ISO/TS16949** 要求, **TI** 不承担任何责任。

产品	应用
数字音频	www.ti.com.cn/audio
放大器和线性器件	www.ti.com.cn/amplifiers
数据转换器	www.ti.com.cn/dataconverters
DLP® 产品	www.dlp.com
DSP - 数字信号处理器	www.ti.com.cn/dsp
时钟和计时器	www.ti.com.cn/clockandtimers
接口	www.ti.com.cn/interface
逻辑	www.ti.com.cn/logic
电源管理	www.ti.com.cn/power
微控制器 (MCU)	www.ti.com.cn/microcontrollers
RFID 系统	www.ti.com.cn/rfidsys
OMAP应用处理器	www.ti.com/omap
无线连通性	www.ti.com.cn/wirelessconnectivity
	德州仪器在线技术支持社区 www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568号, 中建大厦32楼邮政编码: 200122

Copyright © 2016, 德州仪器半导体技术(上海)有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LMZ34202RVQR	ACTIVE	B3QFN	RVQ	43	500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-240C-1 YEAR	-40 to 105	(46002WV ~ LMZ34202)	Samples
LMZ34202RVQT	ACTIVE	B3QFN	RVQ	43	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-240C-1 YEAR	-40 to 105	(46002WV ~ LMZ34202)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

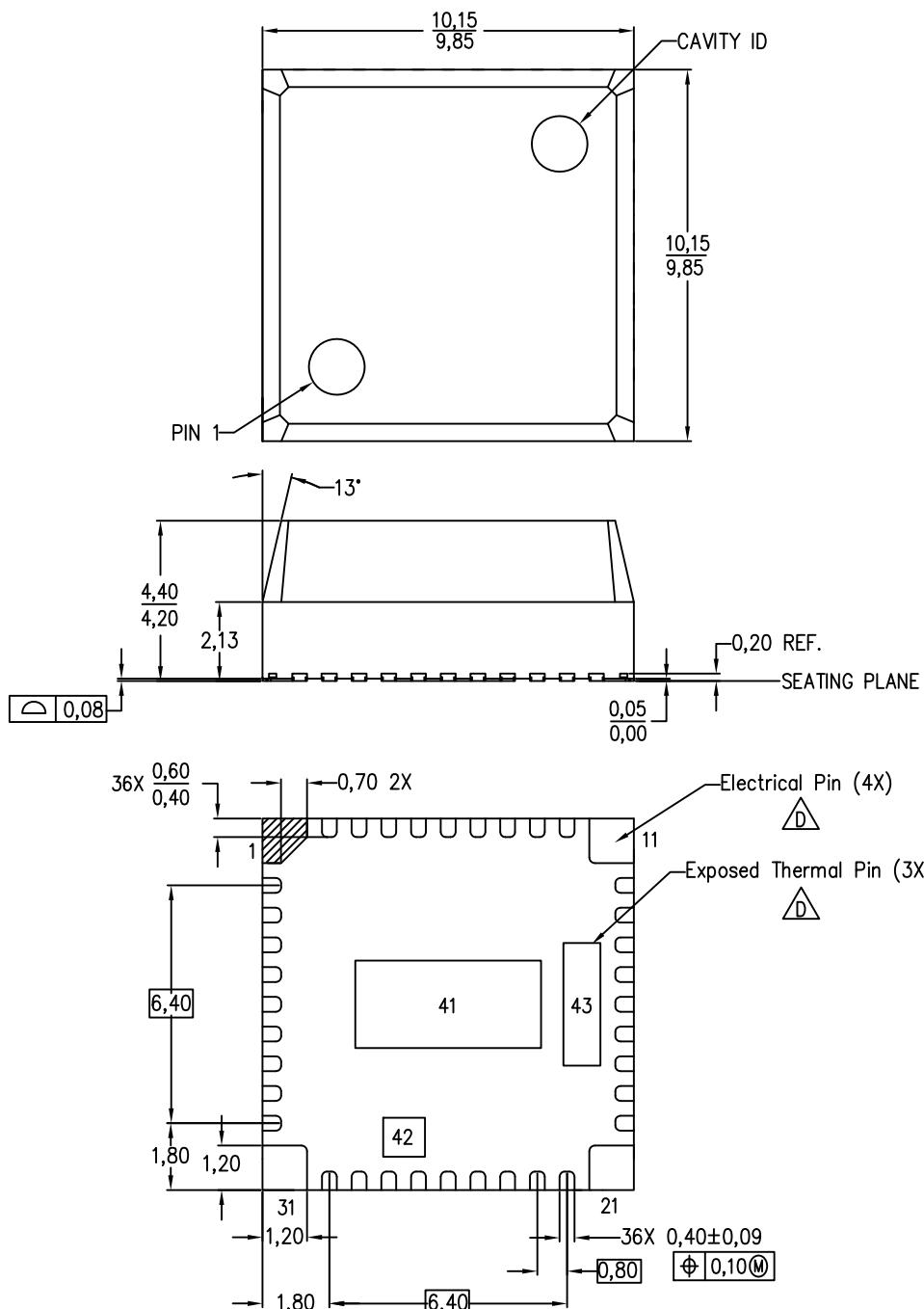
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


www.ti.com

PACKAGE OPTION ADDENDUM

11-Jul-2017

RVQ (S-PB3QFN-N43)

PLASTIC QUAD FLATPACK NO-LEAD

4212144-3/E 11/13

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Quad Flatpack, No-leads (QFN) package configuration.

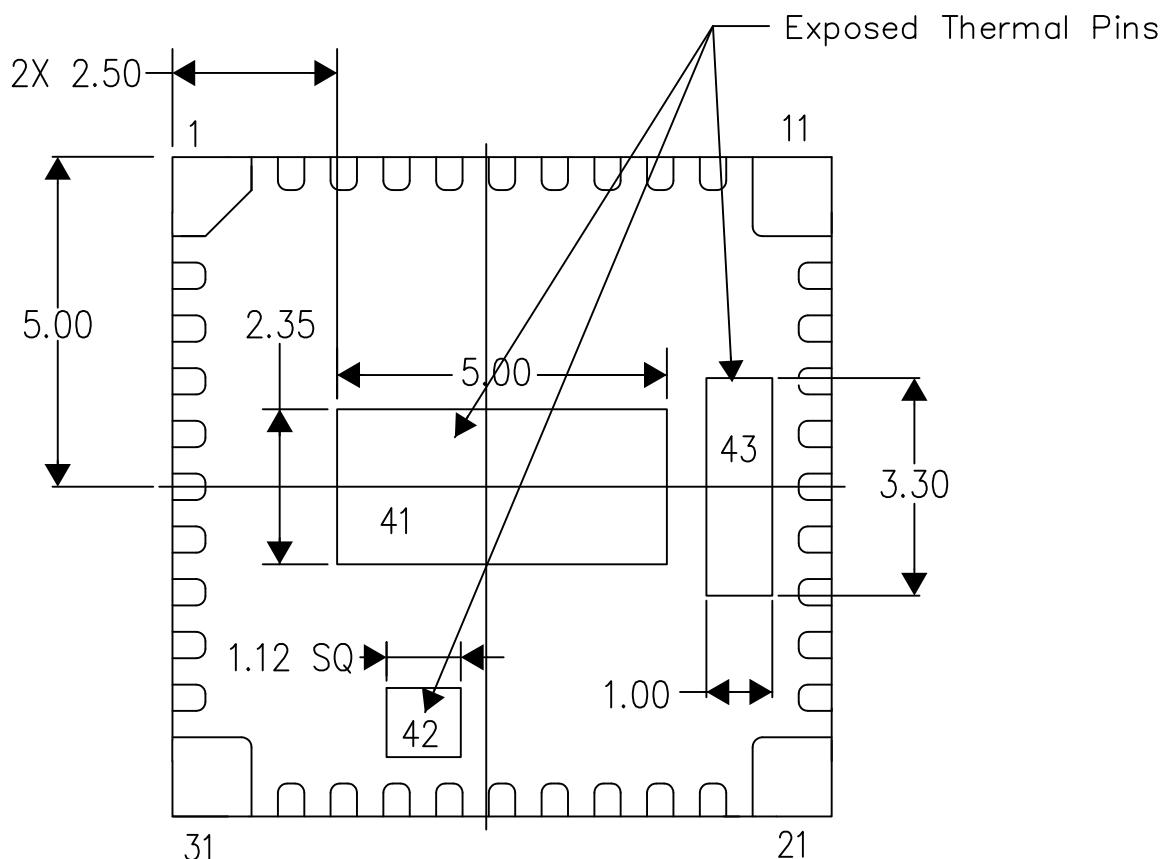
D The package thermal pad must be soldered to the board for thermal and mechanical performance.

E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

F The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.

THERMAL PAD MECHANICAL DATA

RVQ (R-PB3QFN-N43)

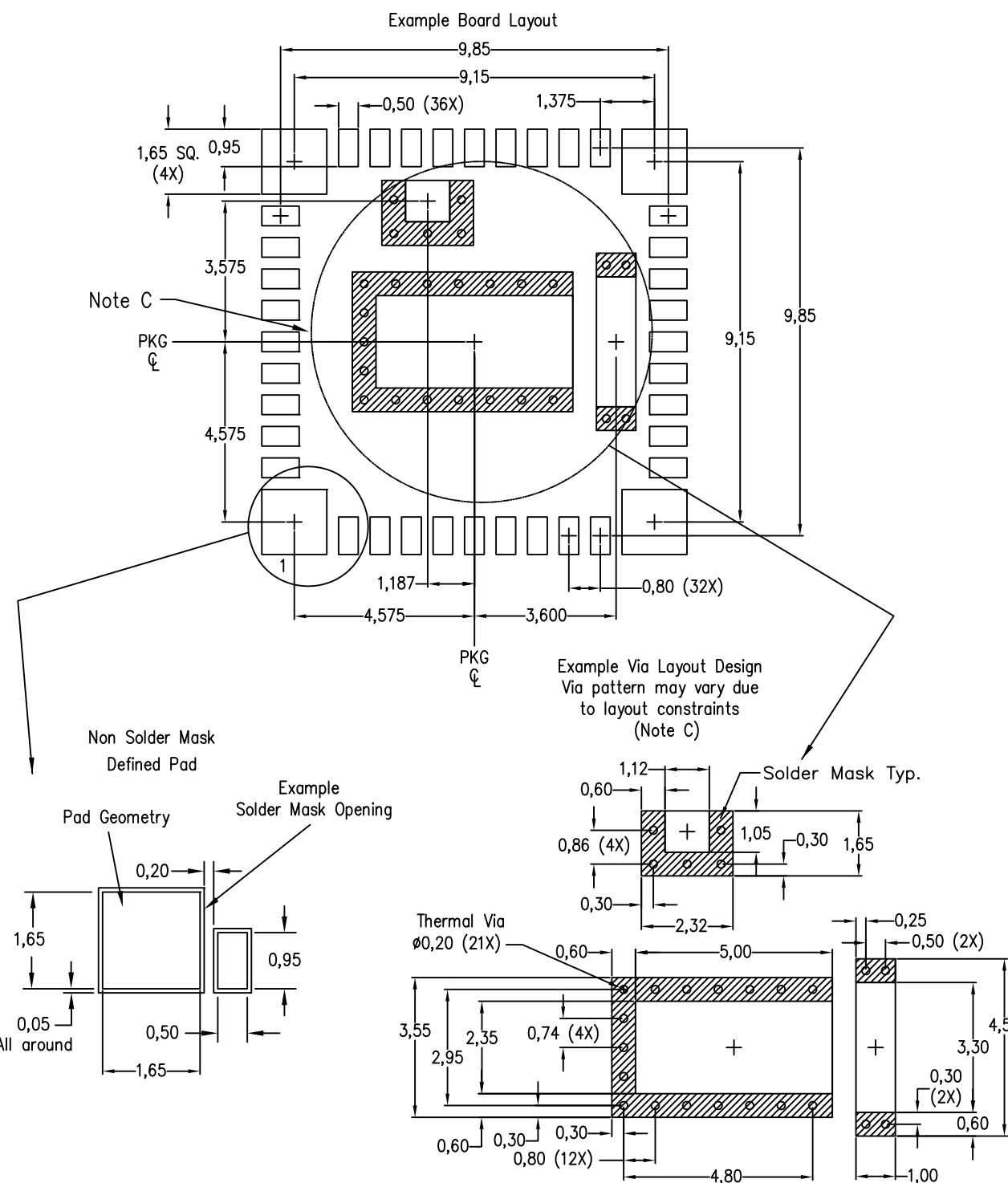

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


Bottom View
Exposed Thermal Pad Dimensions
Thermal Pad Tolerance: $\pm 0.10\text{mm}$

4221144-3/C 02/14

NOTE: All linear dimensions are in millimeters

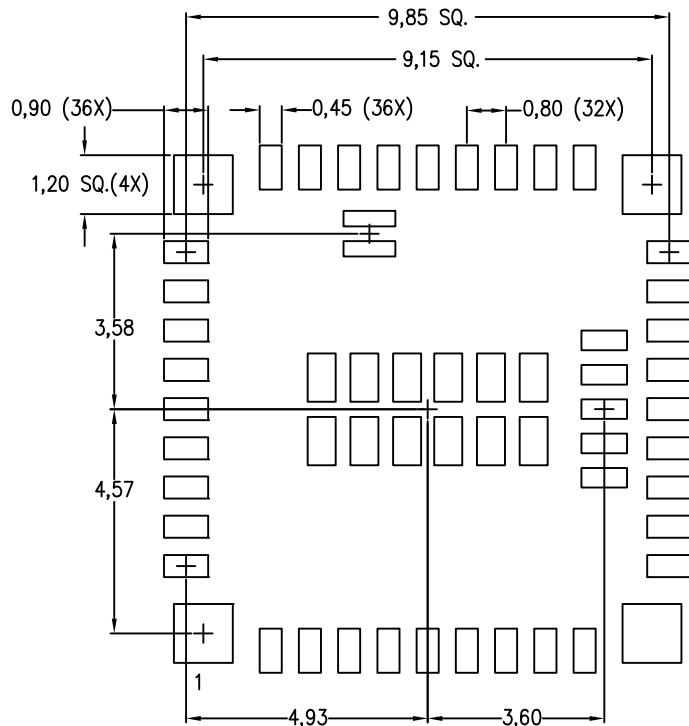
RVQ (S-PB3QFN-N43)

PLASTIC QUAD FLATPACK NO-LEAD

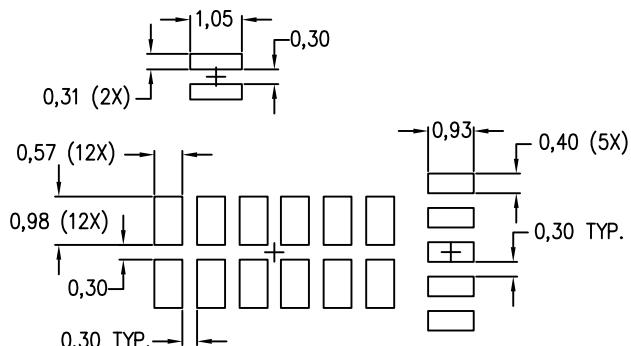
4215269-4/F 08/14

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <<http://www.ti.com>>.

D. See next page for stencil design recommendation.


RVQ (S-PB3QFN-N43)

PLASTIC QUAD FLATPACK NO-LEAD

Example Stencil Design (Note E)

60% solder coverage on center pads

4215269-5/F 08/14

NOTES.

E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.

重要声明

德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改，并不再按最新发布的 JESD48 提供任何产品和服务。买方在下订单前应获取最新的相关信息，并验证这些信息是否完整且是最新的。

TI 公布的半导体产品销售条款 (<http://www.ti.com/sc/docs/stdterms.htm>) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其他条款可能适用于其他类型 TI 产品及服务的使用或销售。

复制 TI 数据表上 TI 信息的重要部分时，不得变更该等信息，且必须随附所有相关保证、条件、限制和通知，否则不得复制。TI 对该等复制文件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时，如果存在对产品或服务参数的虚假陈述，则会失去相关 TI 产品或服务的明示或暗示保证，且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

买方和在系统中整合 TI 产品的其他开发人员（总称“设计人员”）理解并同意，设计人员在设计应用时应自行实施独立的分析、评价和判断，且应全权负责并确保应用的安全性，及设计人员的应用（包括应用中使用的所有 TI 产品）应符合所有适用的法律法规及其他相关要求。设计人员就自己设计的应用声明，其具备制订和实施下列保障措施所需的一切必要专业知识，能够 (1) 预见故障的危险后果，(2) 监视故障及其后果，以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意，在使用或分发包含 TI 产品的任何应用前，将彻底测试该等应用和该等应用中所用 TI 产品的功能。

TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息，包括但不限于与评估模块有关的参考设计和材料（总称“TI 资源”），旨在帮助设计人员开发整合了 TI 产品的应用，如果设计人员（个人，或如果是代表公司，则为设计人员的公司）以任何方式下载、访问或使用任何特定的 TI 资源，即表示其同意仅为该等目标，按照本通知的条款使用任何特定 TI 资源。

TI 所提供的 TI 资源，并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明；也未导致 TI 承担任何额外的义务或责任。TI 有权对 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外，TI 未进行任何其他测试。

设计人员只有在开发包含该等 TI 资源所列 TI 产品的应用时，才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或其他法理授予您任何 TI 知识产权的任何其他明示或默示的许可，也未授予您 TI 或第三方的任何技术或知识产权的许可，该等产权包括但不限于任何专利权、版权、屏蔽作品权或与使用 TI 产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权的许可。

TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述，包括但不限于对准确性或完整性、产权保证、无屡发故障保证，以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任任何申索，包括但不限于因组合产品所致或与之有关的申索，也不为或对设计人员进行辩护或赔偿，即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿，不管 TI 是否获悉可能会产生上述损害赔偿，TI概不负责。

除 TI 已明确指出特定产品已达到特定行业标准（例如 ISO/TS 16949 和 ISO 26262）的要求外，TI 不对未达到任何该等行业标准要求而承担任何责任。

如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准，则该等产品旨在帮助客户设计和创作自己的符合相关功能安全标准和要求的应用。在应用内使用产品的行为本身不会配有任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和标准。设计人员不可将任何 TI 产品用于关乎性命的医疗设备，除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是指出现故障会导致严重身体伤害或死亡的医疗设备（例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设备）。此类设备包括但不限于，美国食品药品监督管理局认定为 III 类设备的设备，以及在美国以外的其他国家或地区认定为同等类别设备的所有医疗设备。

TI 可能明确指定某些产品具备某些特定资格（例如 Q100、军用级或增强型产品）。设计人员同意，其具备一切必要专业知识，可以为自己的应用选择适合的产品，并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。

设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。

邮寄地址：上海市浦东新区世纪大道 1568 号中建大厦 32 楼，邮政编码：200122
Copyright © 2017 德州仪器半导体技术（上海）有限公司