

#### FEATURES

- Highly efficient low noise DC power supply system
- High efficiency buck for first stage conversion
- High PSRR, low noise LDO to remove switching ripple
- Adaptive LDO headroom control option for optimal efficiency and PSRR across full load range
- 3 A Low-Noise Buck Regulator**
  - Wide Input Voltage Range: 4.2 V to 15 V
  - Programmable Output Voltage Range: 0.6 V to 5 V
  - < 40  $\mu$ Vrms Output Noise (Independent of output voltage)
  - 300 kHz to 2.5 MHz Internal clock with external sync up to 26 MHz (factory programmable divider)
- 3 A Low-Noise NFET LDO (Active Filter)**
  - Wide Input Voltage Range: 0.65 V to 5 V
  - Fixed/Programmable Output Voltage Range: 0.6 V to 3.3 V
  - Differential Point of Load Remote-Sensing
  - < 10  $\mu$ Vrms Output Noise (independent of output voltage)
  - PSRR > 50 dB (to 100 kHz) with 300 mV headroom at 3 A
  - Ultra-Fast Transient Response
  - Power Good Output
  - Precision Enable Inputs for both the Buck Regulator and LDO
  - 40 °C to +125 °C junction temperature
  - 32-lead 5 mm x 5 mm LFCSP Package

#### APPLICATIONS

- Low noise power for High Speed ADC and DAC designs
- Powering RF Agile Transceiver and Clocking ICs

#### FUNCTIONAL BLOCK DIAGRAM

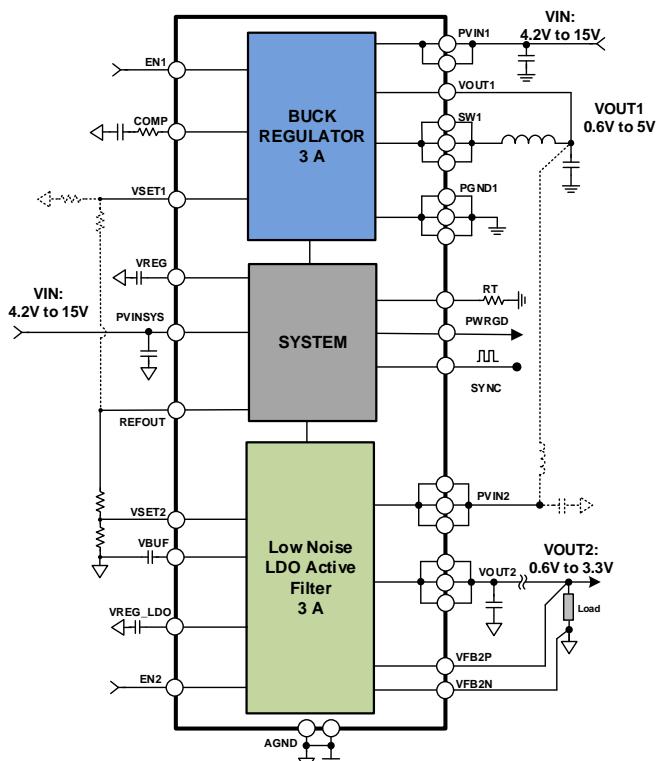



Figure 1.

#### GENERAL DESCRIPTION

ADP5003 integrates a high voltage buck regulator and an ultra-low noise low dropout (LDO) regulator in a small 5mm x 5mm LFCSP 32 lead package to provide highly efficient and quiet regulated supplies.

The buck regulator is optimized to operate at high output currents up to 3 A. The LDO is capable of a maximum output current of 3 A and is designed to operate efficiently with low headroom voltage while maintaining high power supply rejection for frequencies as high as 1MHz.

ADP5003 can be configured to operate in one of two modes. The adaptive mode allows the LDO to operate with a set headroom by adjusting the buck output voltage internally. Alternatively ADP5003 can operate in an independent mode

where both regulators operate separately from each other and where the output voltages are programmed using resistor dividers.

The LDO output voltage can be accurately controlled at the point of load (POL) using the remote sense which compensates for PCB trace impedance while delivering high output currents.

Each regulator is activated via a dedicated precision enable input. The buck switching frequency can be synchronized to an external signal, or programmed with an external resistor.

Safety features in the ADP5003 include thermal shutdown (TSD) and input undervoltage lockout (UVLO). The ADP5003 is rated for a -40°C to +125°C junction temperature range.

#### Rev. PRG

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

# ADP5003\* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

---

## COMPARABLE PARTS

View a parametric search of comparable parts.

## DOCUMENTATION

### Data Sheet

- ADP5003: Low Noise  $\mu$ PMU 3 A Buck Regulator with 3 A LDO Preliminary Data Sheet

## DESIGN RESOURCES

- ADP5003 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

## DISCUSSIONS

View all ADP5003 EngineerZone Discussions.

## SAMPLE AND BUY

Visit the product page to see pricing options.

## TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

## DOCUMENT FEEDBACK

Submit feedback for this data sheet.

---

## TABLE OF CONTENTS

|                                                   |   |                            |    |
|---------------------------------------------------|---|----------------------------|----|
| Features .....                                    | 1 | Power Management Unit..... | 9  |
| Applications.....                                 | 1 | Buck Regulator .....       | 10 |
| Functional Block Diagram .....                    | 1 | LDO Regulator .....        | 10 |
| General Description .....                         | 1 | Applications.....          | 11 |
| Specifications.....                               | 3 | Power Management Unit..... | 11 |
| General Specifications .....                      | 3 | Buck Regulator .....       | 11 |
| Buck Specifications.....                          | 4 | LDO Regulator .....        | 11 |
| LDO Specifications .....                          | 5 | Adaptive Operation.....    | 12 |
| Adaptive Headroom Controller Specifications ..... | 6 | Independent Operation..... | 13 |
| Absolute Maximum Ratings.....                     | 7 | Component Selection .....  | 14 |
| Thermal Resistance .....                          | 7 | Layout Considerations..... | 15 |
| ESD Caution.....                                  | 7 | Outline Dimensions .....   | 16 |
| Pin Configuration and Function Descriptions.....  | 8 |                            |    |
| Theory of Operation .....                         | 9 |                            |    |

## SPECIFICATIONS

### GENERAL SPECIFICATIONS

$V_{PVIN1} = V_{PVINSYS} = 4.2\text{ V to }15\text{ V}$ ;  $V_{PVIN2} = 0.9\text{ V to }5\text{ V}$ ;  $V_{VREG} = V_{VREG\_LDO} = 4.2\text{ V to }5\text{ V}$ ;  $T_J = -40^\circ\text{C to }+125^\circ\text{C}$  for minimum/maximum specifications, and  $T_A = 25^\circ\text{C}$  for typical specifications, unless otherwise noted.

**Table 1.**

| Parameter                        | Symbol                                     | Min         | Typ  | Max     | Unit   | Test Conditions/Comments                       |
|----------------------------------|--------------------------------------------|-------------|------|---------|--------|------------------------------------------------|
| INPUT VOLTAGE RANGE              | $V_{PVIN1}$ , $V_{PVINSYS}$<br>$V_{PVIN2}$ | 4.2<br>0.65 |      | 15<br>5 | V<br>V |                                                |
| THERMAL SHUTDOWN                 |                                            |             |      |         |        |                                                |
| Threshold                        | $T_{SD}$                                   |             | 150  |         | °C     |                                                |
| Hysteresis                       | $T_{SD-HYS}$                               |             | 15   |         | °C     | $T_J$ rising                                   |
| SYNC_IN INPUT                    |                                            |             |      |         |        |                                                |
| Input Logic High                 | $V_{IH}$                                   |             | 1.1  |         | V      |                                                |
| Input Logic Low                  | $V_{IL}$                                   |             |      | 0.4     | V      |                                                |
| Input Leakage Current            | $V_{I-LEAKAGE}$                            |             |      | TBD     | μA     |                                                |
| ADAPTIVE MODE INPUT (VSET1)      |                                            |             |      |         |        |                                                |
| Input Rising Threshold           | $V_{ADPR}$                                 |             | 2.5  |         | V      |                                                |
| Input Hysteresis                 | $V_{ADPH}$                                 |             | TBD  |         | mV     |                                                |
| PWRGD OPEN DRAIN OUTPUT          |                                            |             |      |         |        |                                                |
| Output Voltage Level             | $V_{OL}$                                   |             | 50   | TBD     | mV     | $I_{SINK} = 1\text{ mA}$                       |
| PRECISION ENABLING               |                                            |             |      |         |        |                                                |
| High Level Threshold             | $V_{TH\_H}$                                | TBD         | 1.15 | TBD     | V      |                                                |
| Low Level Threshold              | $V_{TH\_L}$                                | TBD         | 1.05 | TBD     | V      |                                                |
| Shutdown Mode                    | $V_{TH\_S}$                                |             |      | 0.4     | V      |                                                |
| EN1, EN2 Pull-down               | $R_{ENPD}$                                 |             | 1.5  |         | MΩ     |                                                |
| INPUT CURRENT                    |                                            |             |      |         |        |                                                |
| Both Channels Enabled            | $I_{STBY-NOSW}$                            |             | TBD  | TBD     | μA     | No load                                        |
| Both Channels Disabled           | $I_{SHUTDOWN}$                             |             | 5    | TBD     | μA     | $T_J = -40^\circ\text{C to }+85^\circ\text{C}$ |
| REFOUT CHARACTERISTICS           |                                            |             |      |         |        |                                                |
| Output Voltage                   | $V_{REF}$                                  |             | 2.0  |         | V      |                                                |
| Accuracy                         |                                            | TBD         |      | TBD     | %      |                                                |
| VREG, VREG_LDO CHARACTERISTICS   |                                            |             |      |         |        |                                                |
| Output Voltage                   |                                            |             | 5    |         | V      |                                                |
| Accuracy                         |                                            | -2          |      | 2       | %      |                                                |
| Current Limit <sup>1</sup>       |                                            | 10          |      |         | mA     |                                                |
| POWER-GOOD PIN                   |                                            |             |      |         |        |                                                |
| Power-good lower limit           | $PWRGD_F$                                  | 80          | 85   | 90      | %      | FBx Low threshold                              |
| Power-good lower hysteresis      | $PWRGD_{FH}$                               |             | 2.5  |         | %      | FBx Low hysteresis                             |
| Power-good maximum drain current | $I_{PWRGD(MAX)}$                           | TBD         |      |         |        |                                                |
| Power-good Deglitch Time         | $t_{PWRGDD}$                               |             | 50   |         | μs     |                                                |
| PVINSYS UNDERVOLTAGE LOCKOUT     |                                            |             |      |         |        |                                                |
| UVLO Input Voltage Rising        | $UVLO_{PVINSYSRISE}$                       |             |      | 4.2     | V      |                                                |
| UVLO Input Voltage Falling       | $UVLO_{PVINSYSFALL}$                       |             | 3.9  |         | V      |                                                |

<sup>1</sup> VREG and VREG\_LDO should not be used to supply external loads. This current limit is to protect against pin short to ground.

## BUCK SPECIFICATIONS

$V_{PVIN1} = V_{PVINSY} = 4.2 \text{ V to } 15 \text{ V}$ ;  $V_{PVIN2} = 0.65 \text{ V to } 5 \text{ V}$ ;  $V_{VREG} = V_{VREG\_LDO} = 4.2 \text{ V to } 5.25 \text{ V}$ ;  $T_J = -40^\circ\text{C to } +125^\circ\text{C}$  for minimum/maximum specifications, and  $T_A = 25^\circ\text{C}$  for typical specifications, unless otherwise noted.

Table 2.

| Parameter                                      | Symbol                                             | Min  | Typ     | Max  | Unit                  | Test Conditions/Comments                                                                                                         |
|------------------------------------------------|----------------------------------------------------|------|---------|------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| OUTPUT CHARACTERISTICS                         |                                                    |      |         |      |                       |                                                                                                                                  |
| Programmable Output Voltage Range <sup>1</sup> | $V_{PVOUT1}$                                       | 0.6  | 5.0     | V    |                       |                                                                                                                                  |
| Buck Gain                                      | $A_{BUCK}$                                         |      | 2.5     |      |                       |                                                                                                                                  |
| Output Voltage Accuracy                        | $V_{PVOUT1}$                                       | -1   | 1       | %    | %                     | $I_{LOAD1} = 10 \text{ mA}$                                                                                                      |
| Line Regulation                                | $(\Delta V_{PVOUT1}/V_{PVOUT1})/\Delta V_{PVIN1}$  |      | TBD     | %/V  |                       | $I_{LOAD1} = 10 \text{ mA}$                                                                                                      |
| Load Regulation                                | $(\Delta V_{PVOUT1}/V_{PVOUT1})/\Delta I_{PVOUT1}$ |      | TBD     | %/A  |                       | $0 \text{ mA} \leq I_{LOAD1} \leq 3 \text{ A}$                                                                                   |
| Total Output Voltage Accuracy                  |                                                    |      | +/- 1.5 | %    | %                     | $V_{PVIN1} = 15 \text{ V}$<br>$4.2 \text{ V} \leq V_{PVIN1} \leq 15 \text{ V}$<br>$1 \text{ mA} \leq I_{LOAD1} \leq 3 \text{ A}$ |
| OPERATING SUPPLY CURRENT                       | $I_{IN}$                                           |      | TBD     |      | $\mu\text{A}$         | $I_{LOAD1} = 0 \text{ mA}$ , LDO disabled                                                                                        |
| SW CHARACTERISTICS                             |                                                    |      |         |      |                       |                                                                                                                                  |
| SW On Resistance                               | $R_{PFET}$                                         |      | TBD     | TBD  | $\text{m}\Omega$      | $V_{PVIN1} = 15 \text{ V}$ (PVIN1 to SW1)                                                                                        |
|                                                | $R_{NFET}$                                         |      | TBD     | TBD  | $\text{m}\Omega$      | $V_{PVIN1} = 15 \text{ V}$ (SW1 to PGND1)                                                                                        |
| Current Limit                                  | $I_{LIMIT1}$                                       | TBD  |         |      | A                     | NFET switch valley current limit                                                                                                 |
| Slew Rate                                      | $SLEW_{SW}$                                        | -1   | TBD     |      | A                     | Negative current limit                                                                                                           |
| Minimum on-time                                |                                                    |      |         | TBD  | V/ns                  | $I_{PVOUT1} = 1 \text{ A}$                                                                                                       |
| Minimum off-time                               |                                                    |      | TBD     |      | ns                    |                                                                                                                                  |
|                                                |                                                    |      |         |      | ns                    |                                                                                                                                  |
| ACTIVE PULL-DOWN                               | $R_{PDWN-B}$                                       |      | 75      |      | $\Omega$              | Channel disabled                                                                                                                 |
| SOFT-START                                     | $t_{SSBUCK}$                                       |      | 2       |      | ms                    | See factory options                                                                                                              |
| ADJ INPUT BIAS CURRENT                         | $I_{VSET1,2}$                                      |      | 10      | 150  | nA                    | $4.2 \text{ V} \leq V_{PVINSY} \leq 15 \text{ V}$                                                                                |
| OUTPUT NOISE                                   | $N_{PVOUT1}$                                       |      | 40      |      | $\mu\text{V r}$<br>ms | 10 Hz to 100 kHz                                                                                                                 |
| POWER SUPPLY REJECTION RATIO                   | $PSRR_{BUCK}$                                      |      |         |      |                       |                                                                                                                                  |
|                                                |                                                    |      | TBD     |      | dB                    | $V_{PVIN1} = 12 \text{ V}$ , $I_{VOUT1} = 1 \text{ A}$                                                                           |
|                                                |                                                    |      | TBD     |      | dB                    | 1 kHz, $V_{VOUT1} = 0.6 \text{ V}$                                                                                               |
|                                                |                                                    |      | TBD     |      | dB                    | 1 kHz, $V_{VOUT1} = 3.3 \text{ V}$                                                                                               |
|                                                |                                                    |      | TBD     |      | dB                    | 10 kHz, $V_{VOUT1} = 0.6 \text{ V}$                                                                                              |
|                                                |                                                    |      | TBD     |      | dB                    | 10 kHz, $V_{VOUT1} = 3.3 \text{ V}$                                                                                              |
|                                                |                                                    |      | TBD     |      | dB                    | 100 kHz, $V_{VOUT1} = 0.6 \text{ V}$                                                                                             |
|                                                |                                                    |      | TBD     |      | dB                    | 100 kHz, $V_{VOUT1} = 3.3 \text{ V}$                                                                                             |
| OSCILLATOR                                     |                                                    |      |         |      |                       |                                                                                                                                  |
| Internal Switching Freq.                       | $f_{SW1}$                                          | 2.25 | 2.5     | 2.75 | MHz                   | $R_T = x \text{ k}\Omega$                                                                                                        |
|                                                | $f_{SW2}$                                          | 0.27 | 0.3     | 0.33 | MHz                   | $R_T = y \text{ k}\Omega$                                                                                                        |
| SYNC Frequency Range                           | $f_{SYNC}$                                         | 0.3  |         | 26   | MHz                   | Maximum measured at 16x divider                                                                                                  |
| SYNC Minimum Pulse                             |                                                    |      | TBD     |      | ns                    |                                                                                                                                  |
| SYNC Min Off Time                              |                                                    |      | TBD     |      | ns                    |                                                                                                                                  |

<sup>1</sup> The minimum output voltage is dictated by the switching frequency and minimum on-time.

**LDO SPECIFICATIONS**

$V_{PVIN1} = V_{PVIN_{SYS}} = 4.2$  V to 15 V;  $V_{PVIN2} = 0.65$  V to 5 V;  $V_{VREG} = V_{VREG\_LDO} = 4.2$  V to 5.25 V;  $V_{HR} = 300$  mV headroom<sup>1</sup>;  $T_J = -40^\circ\text{C}$  to  $+125^\circ\text{C}$  for minimum/maximum specifications, and  $T_A = 25^\circ\text{C}$  for typical specifications, unless otherwise noted.

**Table 3.**

| Parameter                                                | Symbol                                             | Min     | Typ  | Max    | Unit | Test Conditions/Comments                                                           |
|----------------------------------------------------------|----------------------------------------------------|---------|------|--------|------|------------------------------------------------------------------------------------|
| OUTPUT CHARACTERISTICS                                   |                                                    |         |      |        |      |                                                                                    |
| Programmable Output Voltage Range <sup>2</sup>           | $V_{PVOUT2}$                                       | 0.6     | 1.65 | 3.3    | V    |                                                                                    |
| LDO Gain                                                 | $A_{LDO}$                                          | -1      | 1    | %      | %    | $I_{LOAD2} = 100$ mA @ $25^\circ\text{C}$                                          |
| Output Voltage Accuracy                                  | $V_{PVOUT2}$                                       |         | 0.05 | %/V    |      | $(V_{PVOUT2} + V_{HR}) \leq V_{PVIN2} \leq 6$ V                                    |
| Line Regulation                                          | $(\Delta V_{PVOUT2}/V_{PVOUT2})/\Delta V_{PVIN2}$  |         |      |        |      | $I_{LOAD2} = 100$ mA                                                               |
| Load Regulation                                          | $(\Delta V_{PVOUT2}/V_{PVOUT2})/\Delta I_{PVOUT2}$ | 0.2     |      | %/A    |      | $10$ mA $\leq I_{LOAD2} \leq 3$ A                                                  |
| Total Output Voltage Accuracy                            |                                                    | +/- 1.5 |      | %      |      | $(V_{PVOUT2} + V_{HR}) \leq V_{PVIN2} \leq 6$ V, $10$ mA $\leq I_{LOAD2} \leq 3$ A |
| OPERATING SUPPLY CURRENT                                 | $I_{GND}$                                          | 1       | TBD  | mA     |      | $I_{LOAD2} = 0$ $\mu\text{A}$                                                      |
|                                                          |                                                    | 13      | TBD  | mA     |      | $I_{LOAD2} = 3$ A                                                                  |
| V <sub>REG_LDO</sub> to V <sub>OUT</sub> Minimum Voltage | $V_{LDO-HR}$                                       | 1.7     |      | V      |      | Required to drive NFET                                                             |
| DROPOUT VOLTAGE <sup>3</sup>                             | $V_{DROPOUT}$                                      | 100     | TBD  | mV     |      | $I_{LOAD2} = 3$ A                                                                  |
| CURRENT-LIMIT THRESHOLD <sup>4</sup>                     | $I_{LIMIT}$                                        | 3.6     |      | A      |      |                                                                                    |
| SOFT START TIME                                          | $t_{SSLDO}$                                        | 500     |      | μs     |      | SS = HiZ                                                                           |
| ACTIVE PULL-DOWN                                         | $R_{PDWNLDO}$                                      | 300     |      | Ω      |      | Channel disabled                                                                   |
| OUTPUT NOISE                                             | $N_{PVOUT2}$                                       |         | 10   | μV rms |      | 10 Hz to 100 kHz                                                                   |
| POWER SUPPLY REJECTION RATIO                             | $PSRR_{LDO}$                                       |         |      |        |      | $V_{PVIN2} = V_{PVOUT2} + 0.2$ V, $I_{OUT} = 1$ A                                  |
|                                                          |                                                    | 70      |      | dB     |      | 1 kHz, $V_{PVOUT2} = 0.6$ V                                                        |
|                                                          |                                                    | 70      |      | dB     |      | 1 kHz, $V_{PVOUT2} = 3.3$ V                                                        |
|                                                          |                                                    | 70      |      | dB     |      | 10 kHz, $V_{PVOUT2} = 0.6$ V                                                       |
|                                                          |                                                    | 70      |      | dB     |      | 10 kHz, $V_{PVOUT2} = 3.3$ V                                                       |
|                                                          |                                                    | 50      |      | dB     |      | 100 kHz, $V_{PVOUT2} = 0.6$ V                                                      |
|                                                          |                                                    | 50      |      | dB     |      | 100 kHz, $V_{PVOUT2} = 3.3$ V                                                      |
|                                                          |                                                    | 30      |      | dB     |      | 1000 kHz, $V_{PVOUT2} = 0.6$ V                                                     |
|                                                          |                                                    | 30      |      | dB     |      | 1000 kHz, $V_{PVOUT2} = 3.3$ V                                                     |
| Combined PSRR Buck + LDO                                 | $PSRR_{COMB}$                                      | TBC     |      |        |      |                                                                                    |
| REMOTE SENSE FEEDBACK                                    |                                                    |         |      |        |      |                                                                                    |
| Maximum Voltage Drop $PVOUT2$ to $V_{FB2P}$              |                                                    |         | TBD  | V      |      |                                                                                    |
| Maximum Voltage Drop $AGND2$ to $V_{FB2N}$               |                                                    | TBD     | TBD  | V      |      |                                                                                    |
| Maximum Filter Impedance <sup>5</sup>                    |                                                    |         | TBD  | Ω      |      |                                                                                    |

<sup>1</sup>  $V_{HR}$  is the LDO headroom voltage<sup>2</sup> Limited by minimum  $V_{REG\_LDO}$  to  $PVOUT2$  voltage.<sup>3</sup> Dropout voltage is defined as the input to output voltage differential when the input voltage is set to the nominal output voltage.<sup>4</sup> Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 1.0 V output voltage is defined as the current that causes the output voltage to drop to 90% of 1.0 V, or 0.9 V.<sup>5</sup> Maximum complex impedance from  $PVOUT2$  to  $V_{FB2P}$  in series with the load that is allowable for both stability and voltage drop at maximum load current

**ADAPTIVE HEADROOM CONTROLLER SPECIFICATIONS**

$V_{PVINI} = V_{PVINSY} = 4.2$  V to 15 V;  $V_{PVIN2} = 0.65$  V to 5 V;  $V_{VREG} = V_{VREG\_LDO} = 4.2$  V to 5.25 V;  $T_J = -40^\circ\text{C}$  to  $+125^\circ\text{C}$  for minimum/maximum specifications, and  $T_A = 25^\circ\text{C}$  for typical specifications, unless otherwise noted.

**Table 3.**

| Parameter                                      | Symbol   | Min | Typ               | Max | Unit | Test Conditions/Comments                                                                 |
|------------------------------------------------|----------|-----|-------------------|-----|------|------------------------------------------------------------------------------------------|
| HEADROOM ACCURACY<br>Headroom Voltage Accuracy | $V_{HR}$ | -1  | 1                 | %   |      | $I_{LOAD2} = 100$ mA @ $25^\circ\text{C}$                                                |
| HEADROOM VOLTAGE                               | $V_{HR}$ |     | TBC<br>TBC<br>TBC |     | V    | $I_{LOAD2} = 0$ A to 0.5 A<br>$I_{LOAD2} = 0.5$ A to 2.5 A<br>$I_{LOAD2} = 2.5$ A to 3 A |

## ABSOLUTE MAXIMUM RATINGS

Table 2.

| Parameter                                                                           | Rating                                            |
|-------------------------------------------------------------------------------------|---------------------------------------------------|
| PVIN1, PVINSYS to AGND1                                                             | −0.3 V to +16 V                                   |
| PVIN2 to AGND2                                                                      | −0.3 V to +6.0 V                                  |
| AGND1 to AGND2                                                                      | −0.3 V to +0.3 V                                  |
| PGND1 to AGND1, AGND2                                                               | −0.3 V to +0.3 V                                  |
| PVOUT2 to AGND                                                                      | −0.3 V to (PVIN2 + 0.3 V)                         |
| VFB2N to AGND2                                                                      | −0.3 V to +0.3 V                                  |
| VOUT1, VFB2P, EN1, EN2, SYNC, RT, REFOUT, VBUF, VSET1, VSET2, COMP1 to AGND1, AGND2 | −0.3 V to the lower of (VREG + 0.3 V) or +6.0 V   |
| SW1 to PGND1                                                                        | −0.3 V to (PVIN1 + 0.3 V)                         |
| VREG, VREG_LDO to AGND1                                                             | −0.3 V to the lower of (PVINSYS + 0.3V) or +6.0 V |
| VREG to VREG_LDO                                                                    | −0.3 V to +0.3 V                                  |
| Storage Temperature Range                                                           | −65°C to +150°C                                   |
| Operating Junction Temperature Range                                                | −40°C to +125°C                                   |
| Soldering Conditions                                                                | JEDEC J-STD-020                                   |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## THERMAL RESISTANCE

$\theta_{JA}$  and  $\theta_{JT}$  are based on a 4-layer printed circuit board (PCB) (two signal and two power planes) with nine thermal vias connecting the exposed pad to the ground plane as recommended in the layout considerations.  $\theta_{JT}$  is measured at the top of the package and is independent of the PCB. The  $\Psi_{JT}$  value is most appropriate for calculating junction to case temperature in the application.

Table 3. Thermal Resistance

| Package Type  | $\theta_{JA}$ | $\theta_{JT}$ | $\Psi_{JT}$ | Unit |
|---------------|---------------|---------------|-------------|------|
| 32 Lead LFCSP | 41.56         | 20.95         | 0.22        | °C/W |

## ESD CAUTION



**ESD (electrostatic discharge) sensitive device.** Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

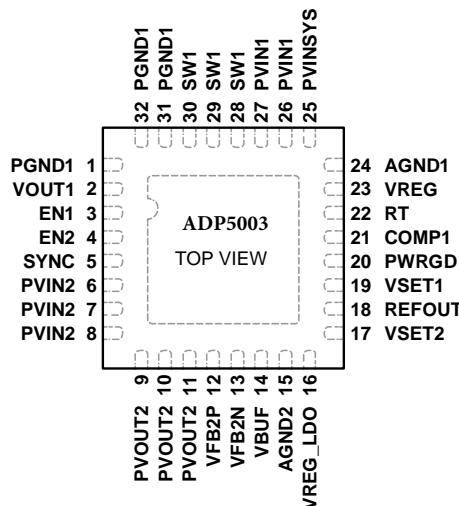



Figure 2. Pin Configuration – Top View (Preliminary data subject to change)

Table 4. Preliminary Pin Function Descriptions (Subject to change)

| Pin No.    | Mnemonic | Description                                                                                                                                 |
|------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 31, 32  | PGND1    | Buck regulator dedicated power ground.                                                                                                      |
| 2          | VFB1     | Buck regulator sense feedback input. Connect short sense trace to output capacitor.                                                         |
| 3          | EN1      | Buck regulator precision enable.                                                                                                            |
| 4          | EN2      | LDO precision enable.                                                                                                                       |
| 5          | SYNC     | External clock input / Clock synchronization output (Factory programmable).                                                                 |
| 6, 7, 8    | PVIN2    | LDO regulator power input.                                                                                                                  |
| 9, 10, 11  | PVOUT2   | LDO regulator power output.                                                                                                                 |
| 12         | VFB2P    | LDO regulator positive sense feedback input. Connect sense trace to LDO output at load. Route with VFB2N on PCB                             |
| 13         | VFB2N    | LDO regulator ground sense feedback input. Connect sense trace to ground at load. Route with VFB2P on PCB.                                  |
| 14         | VBUF     | Bypass capacitor terminal for LDO reference.                                                                                                |
| 15         | AGND2    | LDO dedicated analogue ground.                                                                                                              |
| 16         | VREG_LDO | Internal regulator output for LDO. Connect a ceramic decoupling capacitor between this pin and AGND2. Do not use to power external devices. |
| 17         | VSET2    | LDO regulator output voltage configuration input.                                                                                           |
| 18         | REFOUT   | Internal reference output required for driving external resistor dividers for VSET1 and VSET2.                                              |
| 19         | VSET1    | Buck regulator output voltage configuration input. Connect to VREG to enable adaptive regulation mode.                                      |
| 20         | PWRGD    | Power Good digital output (open-drain NFET pull down driver).                                                                               |
| 21         | COMP1    | Buck regulator external compensation.                                                                                                       |
| 22         | RT       | Resistor adjustable frequency programming input (Factory programmable).                                                                     |
| 23         | VREG     | Internal regulator output. Connect a ceramic decoupling capacitor between this pin and AGND1. Do not use to power external devices.         |
| 24         | AGND1    | Analog ground.                                                                                                                              |
| 25         | PVINSYS  | System power supply for the ADP5003.                                                                                                        |
| 26,27      | PVIN1    | Buck regulator power input.                                                                                                                 |
| 28, 29, 30 | SW1      | Buck regulator switching output.                                                                                                            |
| EPAD       | EPAD     | Exposed Thermal pad. Connect to AGND1                                                                                                       |

## THEORY OF OPERATION

### POWER MANAGEMENT UNIT

The ADP5003 is a micro power management unit (uPMU) combining a step-down (buck) dc-to-dc converter and an ultra low noise low dropout linear regulator (LDO). The high switching frequency and 5mm x 5mm 32-lead LFCSP package allow for a compact power management solution.

#### **Adaptive Headroom Control**

The ADP5003 features a scheme to control the LDO headroom voltage. This ensures an optimal operating efficiency whilst maintaining ultra low noise performance across the full range of load current. When in adaptive mode, the buck regulator output voltage is managed by the ADP5003. Alternatively the buck and LDO may be operated independently with a fixed intermediate voltage.

#### **Precision Enables / Shutdown**

The ADP5003 has individual enable pins (EN1 and EN2) to control the regulators.

Each enable input has a coarse enable threshold associated with it which is used to turn on the ADP5003 internal logic and exit shutdown. When either EN1 or EN2 exceed the coarse enable rising threshold, the internal logic will turn on. When both EN1 and EN2 fall below the coarse enable falling threshold, the chip will enter shutdown mode.

A precision enable function allows for a precise turn on point for the regulators to allow the possibility of external sequencing. A voltage level higher than  $V_{ENRP}$  applied to the EN1 or EN2 pin activates a regulator whereas a level below  $V_{ENRP}$ , minus  $V_{ENHP}$  hysteresis, turns off a regulator. The buck is controlled by EN1, and the LDO is controlled by EN2 pin.

#### **Undervoltage Lockout (UVLO)**

To protect against input voltage being too low, under voltage lockout (UVLO) circuitry is integrated in the system. If the input voltage on PVINSYS drops below a predefined UVLO threshold, all channels shut down.

The part is enabled again when the voltage on PVINSYS rises above the UVLO threshold if the enable pins remain active.

#### **Thermal Shutdown (TSD)**

In the event that the junction temperature rises above 150°C, the thermal shutdown circuit turns off all of the regulators.

Extreme junction temperatures can be the result of high current operation, poor circuit board design, or high ambient temperature. A 15°C hysteresis is included so that when thermal shutdown occurs, the regulators do not return to operation until the on-chip temperature drops below 135°C. When emerging from thermal shutdown, all regulators restart with soft start control.

#### **Active Pulldown**

Both regulators have optional, factory programmable, active pull-down resistors discharging the respective output capacitors when the regulators are disabled. The pull-down resistors are

connected between VOUTx and AGND. Active pull-downs are disabled when the regulators are turned on.

In case of a TSD or UVLO event, the active pull-downs are enabled to discharge the output capacitors quickly. The pull-down resistors remain engaged until the fault event is no longer present or the input supply voltage falls below a min voltage level, typically 1V, that guarantees pull-down to remain enabled.

#### **Soft Start**

Both regulators have an internal soft start function that ramps the output voltage in a controlled manner upon startup, thereby limiting the inrush current. This reduces the risk of noise spikes and voltage drops on upstream supplies.

The ADP5003 may be factory programmed to allow control of either the SS time.

#### **Power-Good**

The ADP5003 has a dedicated power good, open-drain, output PWRGD. This indicates whether one or more regulators are outside the voltage limits specified by  $PWRGD_L$  (Lower limit) and  $PWRGD_R$  (Upper limit). When either one or both of the regulator outputs are outside the power good limits, the PWRGD output is pulled low.

When in adaptive mode the power-good will only monitor the LDO output.

When in standalone mode the power-good will only monitor the regulator / regulators which are enabled.

During startup the PWRGD will be held low until the soft start ramp is complete.

## BUCK REGULATOR

### **Control Scheme**

The buck operate with a fixed frequency, current mode PWM control architecture where the duty cycle of the integrated switches is adjusted and regulates the output voltage. At the start of each oscillator cycle, the PFET switch is turned on, sending a positive voltage across the inductor. Current in the inductor increases until the current sense signal crosses the peak inductor current threshold, which turns off the PFET switch and turns on the NFET synchronous rectifier. This sends a negative voltage across the inductor, causing the inductor current to decrease. The synchronous rectifier stays on for the remainder of the cycle. The buck regulates the output voltage by adjusting the peak inductor current threshold. The peak current sense signal is generated by means of an emulated inductor current scheme which senses the actual current in the inductor during the 'off' phase of cycle when the NFET is conducting. This information is used to set the emulated signal into a capacitor which then mimics the ramp during the 'on' phase of the cycle which is what is used to compare against the control signal.

### **Startup**

The buck will turn on with a controlled ramp set according to the internal factory programmed soft start setting.

### **Oscillator Frequency Control**

The ADP5003 may be factory programmed to allow control of either the SS time or the buck regulator oscillator frequency using the RT/SS pin. If configured, the RT/SS pin can be connected via a resistor to AGND in order to define the buck regulator internal switching frequency.

When there is no resistor present on the pin, the internal oscillator will operate at the lowest frequency. An upper limit will prevent out of range frequencies when the RT/SS pin is shorted to ground or connected with an incorrect resistor value.

### **External Oscillator Synchronisation**

The SYNC\_IN/SYNC\_OUT pin is dedicated to oscillator synchronisation and allows the ADP5003 to lock to an external clock or to output a synchronisation signal for low noise applications. The pin may be factory programmed to either mode.

In SYNC\_IN mode, an applied external clock signal will act as a synchronization and the buck regulator will operate in sync with this signal. By default the ratio of SYNC\_IN frequency to internal frequency is 1:1, however this can be factory programmed to 2:1, 4:1, 8:1 or 16:1 in order to divide down from faster system clocks.

When alternating between external clocks and the internal oscillator, the presence of an external frequency will cause a multiplexer to switch between the internal oscillator and the external SYNC frequency. The output of this multiplexer will act as the frequency reference to an internal PLL. This will ensure that changing between the two modes of operation will result in a smooth transition between the different frequencies.

In SYNC\_OUT mode, the pin will output the internal buck switching frequency allowing other regulators or devices to synchronize with this signal.

### **Current Limit**

The buck has protection circuitry to limit the amount of current flowing through the switches.

### **Short Circuit Protection**

The buck has protection circuitry to limit the amount of current in the event of a short circuit on the output.

## **LDO REGULATOR**

The ADP5003 contains a single low-noise, low dropout linear regulator that uses an NFET pass device to provide high power supply rejection ratio (PSRR) with low headroom voltage and output current up to 3 A.

## APPLICATIONS

### POWER MANAGEMENT UNIT

#### Soft Start

The ADP5003 may be factory programmed to allow control of the SS time.

#### Power-Good

An external pull-up is necessary to drive PWRGD output high. Whilst the value of the pull-up resistor is not critical, it is recommended to use a  $10\text{k}\Omega$  to  $300\text{k}\Omega$  resistor. The resistor must be pulled to a voltage level within 1.2V to 5V. The PWRGD pin can sink a maximum current of  $I_{\text{PWRGD}(\text{MAX})}$ .

### BUCK REGULATOR

#### Output Voltage

The output voltage on the buck regulator is adjustable through an external resistor divider or can be factory programmed to default values. When using adaptive control, the buck output voltage is controlled by the ADP5003.

Adjustable output voltage operation is shown in Figure 3 and fixed voltage operation in Figure 4.

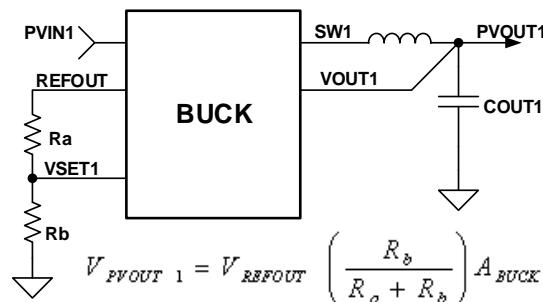



Figure 3. Buck Adjustable Output Voltage Setting

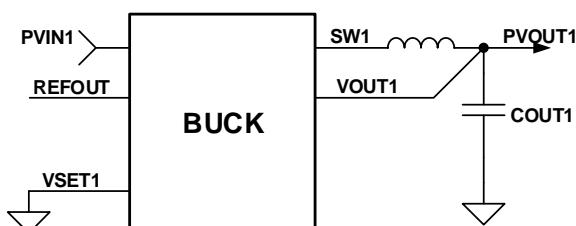



Figure 4 Buck Fixed Output Voltage Configuration

### LDO REGULATOR

#### Output Voltage

The output voltage on the LDO regulator is adjustable through an external resistor divider or can be factory programmed to default values. Adjustable output voltage operation is shown in Figure 5 and fixed voltage operation in Figure 6.

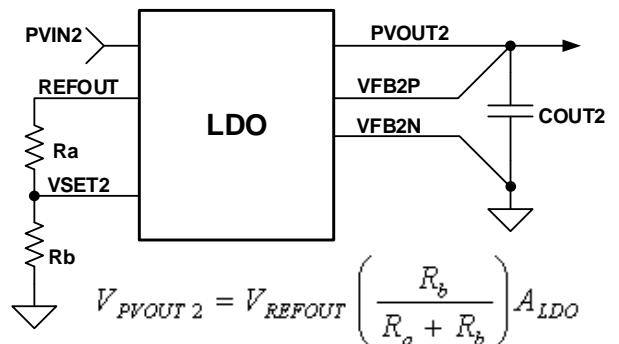



Figure 5. LDO Adjustable Output Voltage Setting

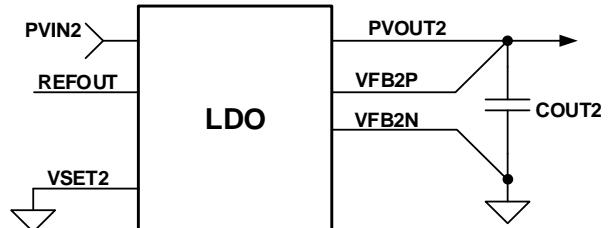



Figure 6. LDO Fixed Output Voltage Configuration

## ADAPTIVE OPERATION

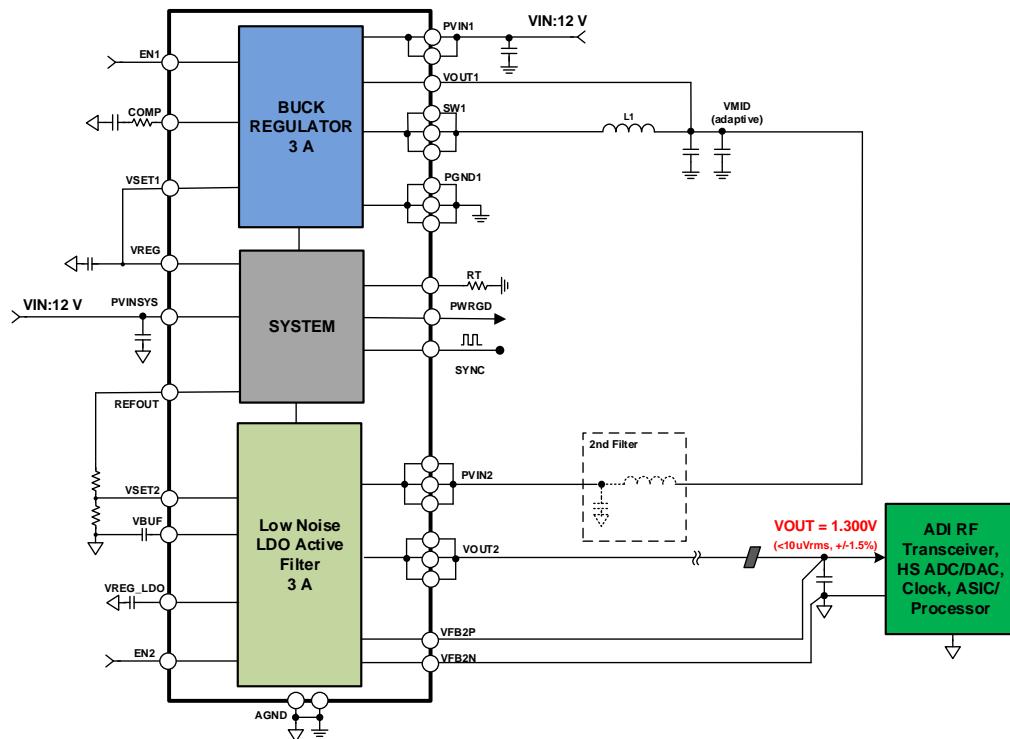



Figure 7. Adaptive Operation Mode

## INDEPENDENT OPERATION

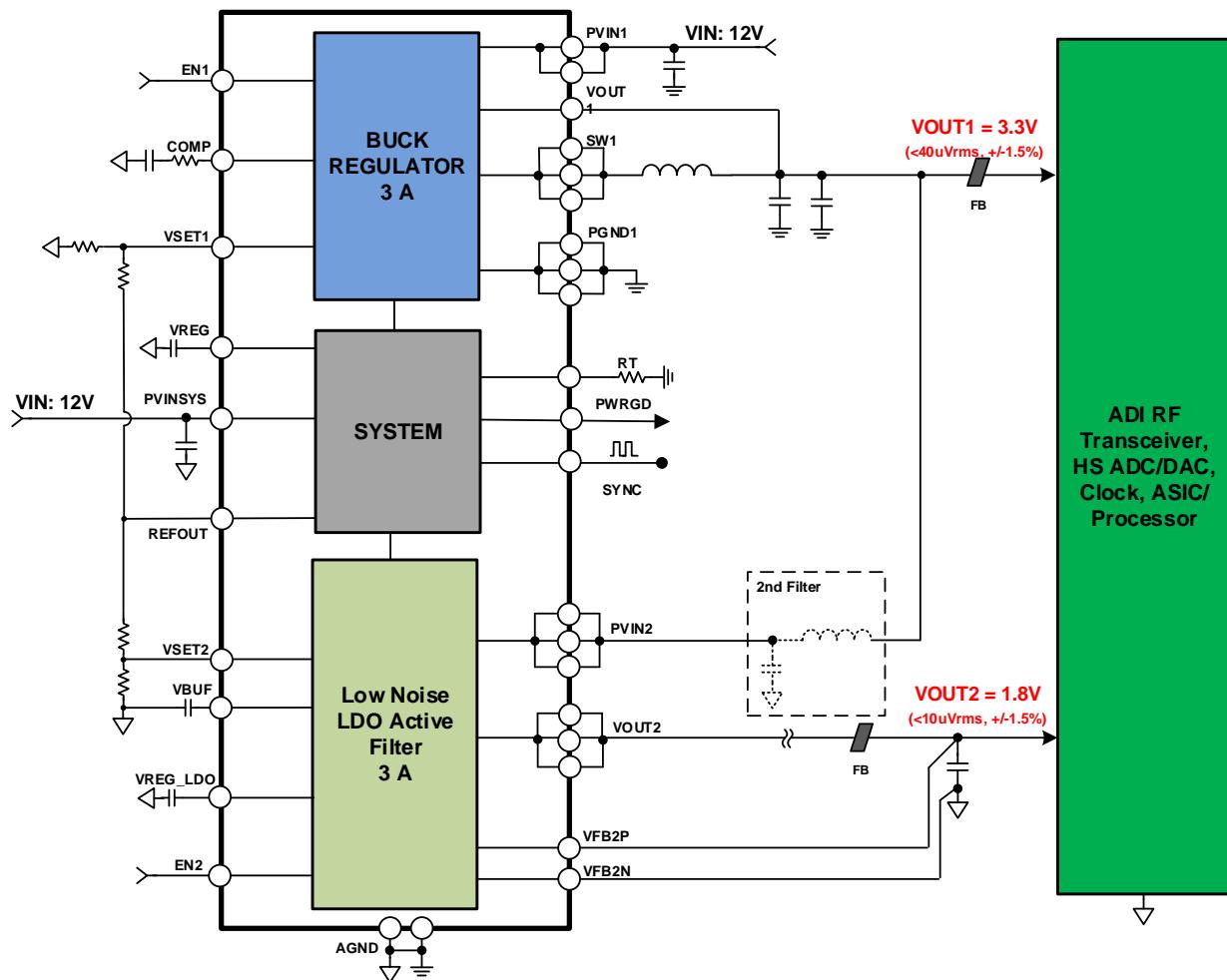



Figure 8. Independent Operation Mode (Dual Output)

## COMPONENT SELECTION

### **Output Capacitors**

Higher output capacitor values reduce the output voltage ripple and improve load transient response. When choosing this value, it is also important to account for the loss of capacitance due to output voltage dc bias.

Ceramic capacitors are manufactured with a variety of dielectrics, each with a different behavior over temperature and applied voltage. Capacitors must have a dielectric adequate to ensure the minimum capacitance over the necessary temperature range and dc bias conditions. X5R or X7R dielectrics with a voltage rating of 25 V or 50 V (depending on output) are recommended for best performance. Y5V and Z5U dielectrics are not recommended for use with any dc-to-dc converter because of their poor temperature and dc bias characteristics.

Calculate the worst-case capacitance accounting for capacitor variation over temperature, component tolerance, and voltage using the following equation:

$$C_{EFFECTIVE} = C_{NOMINAL} \times (1 - TEMPSCO) \times (1 - DCBIASCO) \times (1 - Tolerance)$$

where:

$C_{EFFECTIVE}$  is the effective capacitance at the operating voltage.

$C_{NOMINAL}$  is the nominal data sheet capacitance.

$TEMPSCO$  is the worst-case capacitor temperature coefficient.

$DCBIASCO$  is the dc bias derating at the output voltage.

$Tolerance$  is the worst-case component tolerance.

To guarantee the performance of the device, it is imperative that the effects of dc bias, temperature, and tolerances on the behavior of the capacitors be evaluated for each application.

Capacitors with lower effective series resistance (ESR) and effective series inductance (ESL) are preferred to minimize output voltage ripple.

### **Input Capacitor**

Higher value input capacitors help to reduce the input voltage ripple and improve transient response.

To minimize supply noise, place the input capacitor as close as possible to the relevant input pin.

## LAYOUT CONSIDERATIONS

Layout is important for all switching regulators, but is particularly important for regulators with high switching frequencies. To achieve high efficiency, good regulation, good stability, and low noise, a well-designed PCB layout is required. Follow these guidelines when designing PCBs:

- Keep high current traces as short and wide as possible to minimize parasitic series inductance, which causes spiking and electromagnetic interference (EMI).
- Keep the input bypass capacitors, close to the PVIN1, PVIN2 and PVINSYS pins.
- Route the VFB2P and VFB2N LDO sense traces together connecting them at the point of load. Keep them as short as possible and away from noise sources.

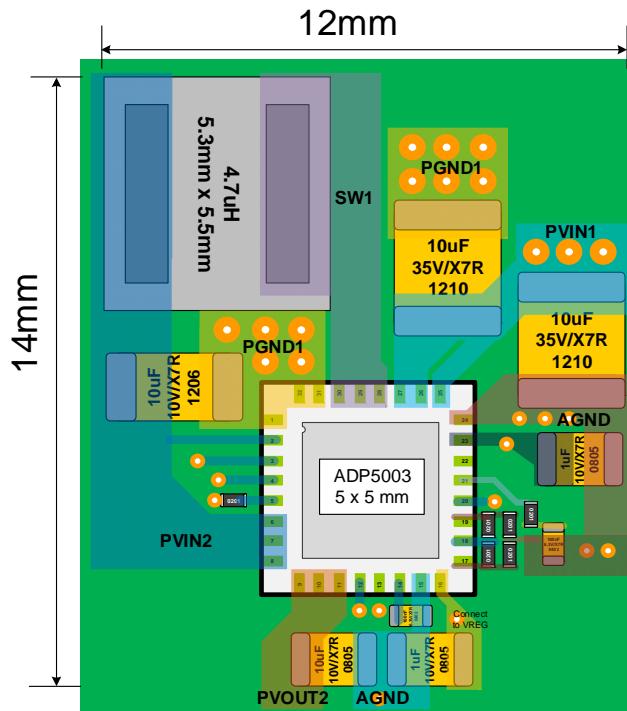
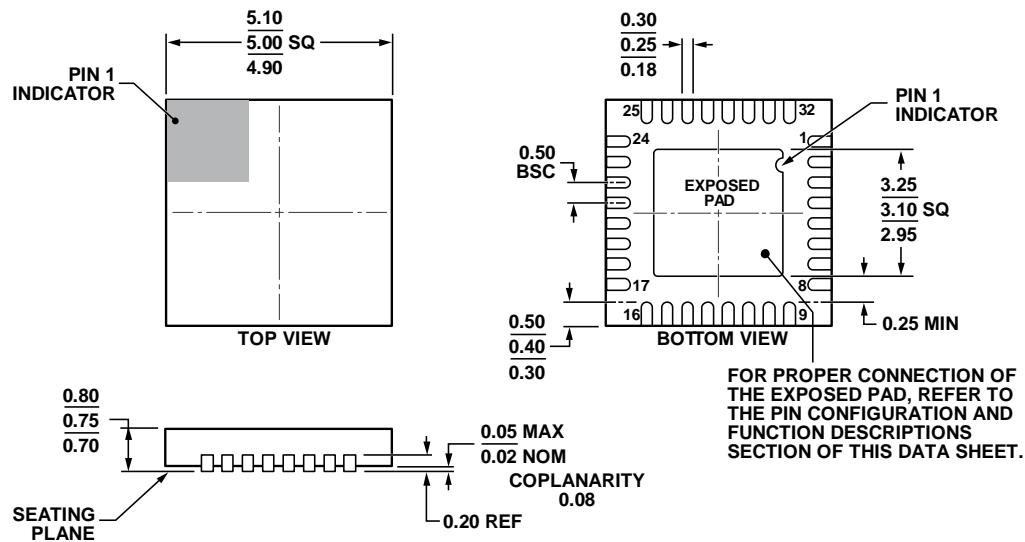




Figure 9. Example Outline Layout (Preliminary data subject to change)

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.

Figure 10. 32-Lead Lead Frame Chip Scale Package [LFCSP\_WQ]  
5mm by 5mm Body, (CP-32-7)  
Dimensions shown in millimetres